{"title":"Managing Driving Modes in Automated Driving Systems","authors":"D. Insua, William N. Caballero, Roi Naveiro","doi":"10.1287/trsc.2021.1110","DOIUrl":null,"url":null,"abstract":"Current technology is unable to produce massively deployable, fully automated vehicles that do not require human intervention. Given that such limitations are projected to persist for decades, scenarios requiring a driver to assume control of a semiautomated vehicle, and vice versa, will remain a feature of modern roadways for the foreseeable future. Herein, we adopt a comprehensive perspective of this problem by simultaneously considering operational design domain supervision, driver and environment monitoring, trajectory planning, and driver-intervention performance assessment. More specifically, we develop a modeling framework for each of the aforementioned functions by leveraging decision analysis and Bayesian forecasting. Utilizing this framework, a suite of algorithms is subsequently proposed for driving-mode management and early warning emission, according to a management by exception principle. The efficacy of the developed methods is illustrated and examined via a simulated case study.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"103 1","pages":"1259-1278"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2021.1110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Current technology is unable to produce massively deployable, fully automated vehicles that do not require human intervention. Given that such limitations are projected to persist for decades, scenarios requiring a driver to assume control of a semiautomated vehicle, and vice versa, will remain a feature of modern roadways for the foreseeable future. Herein, we adopt a comprehensive perspective of this problem by simultaneously considering operational design domain supervision, driver and environment monitoring, trajectory planning, and driver-intervention performance assessment. More specifically, we develop a modeling framework for each of the aforementioned functions by leveraging decision analysis and Bayesian forecasting. Utilizing this framework, a suite of algorithms is subsequently proposed for driving-mode management and early warning emission, according to a management by exception principle. The efficacy of the developed methods is illustrated and examined via a simulated case study.