{"title":"A spatio-temporal autoregressive model for monitoring and predicting COVID infection rates.","authors":"Peter Congdon","doi":"10.1007/s10109-021-00366-2","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 epidemic has raised major issues with regard to modelling and forecasting outcomes such as cases, deaths and hospitalisations. In particular, the forecasting of area-specific counts of infectious disease poses problems when counts are changing rapidly and there are infection hotspots, as in epidemic situations. Such forecasts are of central importance for prioritizing interventions or making severity designations for different areas. In this paper, we consider different specifications of autoregressive dependence in incidence counts as these may considerably impact on adaptivity in epidemic situations. In particular, we introduce parameters to allow temporal adaptivity in autoregressive dependence. A case study considers COVID-19 data for 144 English local authorities during the UK epidemic second wave in late 2020 and early 2021, which demonstrate geographical clustering in new cases-linked to the then emergent alpha variant. The model allows for both spatial and time variation in autoregressive effects. We assess sensitivity in short-term predictions and fit to specification (spatial vs space-time autoregression, linear vs log-linear, and form of space decay), and show improved one-step ahead and in-sample prediction using space-time autoregression including temporal adaptivity.</p>","PeriodicalId":47786,"journal":{"name":"Music Perception","volume":"24 1","pages":"583-610"},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039004/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Music Perception","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10109-021-00366-2","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/26 0:00:00","PubModel":"Epub","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 epidemic has raised major issues with regard to modelling and forecasting outcomes such as cases, deaths and hospitalisations. In particular, the forecasting of area-specific counts of infectious disease poses problems when counts are changing rapidly and there are infection hotspots, as in epidemic situations. Such forecasts are of central importance for prioritizing interventions or making severity designations for different areas. In this paper, we consider different specifications of autoregressive dependence in incidence counts as these may considerably impact on adaptivity in epidemic situations. In particular, we introduce parameters to allow temporal adaptivity in autoregressive dependence. A case study considers COVID-19 data for 144 English local authorities during the UK epidemic second wave in late 2020 and early 2021, which demonstrate geographical clustering in new cases-linked to the then emergent alpha variant. The model allows for both spatial and time variation in autoregressive effects. We assess sensitivity in short-term predictions and fit to specification (spatial vs space-time autoregression, linear vs log-linear, and form of space decay), and show improved one-step ahead and in-sample prediction using space-time autoregression including temporal adaptivity.
期刊介绍:
Music Perception charts the ongoing scholarly discussion and study of musical phenomena. Publishing original empirical and theoretical papers, methodological articles and critical reviews from renowned scientists and musicians, Music Perception is a repository of insightful research. The broad range of disciplines covered in the journal includes: •Psychology •Psychophysics •Linguistics •Neurology •Neurophysiology •Artificial intelligence •Computer technology •Physical and architectural acoustics •Music theory