Design of a Reliable Hybrid (PV/Diesel) Power System with Energy Storage in Batteries for Remote Residential Home

Vincent Anayochukwu Ani
{"title":"Design of a Reliable Hybrid (PV/Diesel) Power System with Energy Storage in Batteries for Remote Residential Home","authors":"Vincent Anayochukwu Ani","doi":"10.1155/2016/6278138","DOIUrl":null,"url":null,"abstract":"This paper reports the experience acquired with a photovoltaic (PV) hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank). The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah) worth of battery storage, and a 5.4 kW (6.8 kVA) generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.","PeriodicalId":30572,"journal":{"name":"Journal of Energy","volume":"78 1 1","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6278138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

This paper reports the experience acquired with a photovoltaic (PV) hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank). The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah) worth of battery storage, and a 5.4 kW (6.8 kVA) generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电池储能的可靠混合(光伏/柴油)电力系统的设计
本文报告了将光伏(PV)混合系统模拟为位于尼日利亚南部的一个住宅替代柴油系统所获得的经验。混合系统的设计是为了克服气候变化问题,确保不间断的可靠供应,并提高整体系统效率(通过集成电池组)。系统设计理念是最大限度地简化;因此,使用传统的模拟工具和代表性的日照数据对系统进行了评估。该系统包括一个15kw的光伏阵列,21.6 kWh (3600 Ah)的电池存储,以及5.4 kW (6.8 kVA)的发电机。本文详细分析了通过系统的能量流,并量化了由光伏充电控制器、电池存储往返、整流器和逆变器转换引起的所有损失。此外,还进行了光伏/柴油/电池与柴油/电池的仿真比较,结果表明,光伏/柴油混合解决方案与电池的资本成本几乎是发电机和电池组合的三倍,但净现值成本(代表系统寿命周期内的成本)不到发电机和电池组合的一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
28 weeks
期刊最新文献
Current Status and Future Prospects of Small-Scale Household Biodigesters in Sub-Saharan Africa Strategic Sizing and Placement of Distributed Generation in Radial Distributed Networks Using Multiobjective PSO Catalytic Pyrolysis of Plastic Waste to Liquid Fuel Using Local Clay Catalyst Optimization of Syngas Quality for Fischer-Tropsch Synthesis Review and Design Overview of Plastic Waste-to-Pyrolysis Oil Conversion with Implications on the Energy Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1