Quality of data driven simulation workflows

M. Reiter, Uwe Breitenbücher, Oliver Kopp, D. Karastoyanova
{"title":"Quality of data driven simulation workflows","authors":"M. Reiter, Uwe Breitenbücher, Oliver Kopp, D. Karastoyanova","doi":"10.1109/ESCIENCE.2012.6404417","DOIUrl":null,"url":null,"abstract":"Simulations are characterized by long running calculations and complex data handling tasks accompanied by non-trivial data dependencies. The workflow technology helps to automate and steer such simulations. Quality of Data frameworks are used to determine the goodness of simulation data, e.g., they analyze the accuracy of input data with regards to the usability within numerical solvers. In this paper, we present generic approaches using evaluated Quality of Data to steer simulation workflows. This allows for ensuring that the predefined requirements such as a precise final result or a short execution time will be met even after the execution of simulation workflow has been started. We discuss mechanisms for steering a simulation on all relevant levels - workflow, service, algorithms, and define a unifying approach to control such workflows. To realize Quality of Data-driven workflows, we present an architecture realizing the presented approach and a WS-Policy-based language to describe Quality of Data requirements and capabilities.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":"27 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCIENCE.2012.6404417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Simulations are characterized by long running calculations and complex data handling tasks accompanied by non-trivial data dependencies. The workflow technology helps to automate and steer such simulations. Quality of Data frameworks are used to determine the goodness of simulation data, e.g., they analyze the accuracy of input data with regards to the usability within numerical solvers. In this paper, we present generic approaches using evaluated Quality of Data to steer simulation workflows. This allows for ensuring that the predefined requirements such as a precise final result or a short execution time will be met even after the execution of simulation workflow has been started. We discuss mechanisms for steering a simulation on all relevant levels - workflow, service, algorithms, and define a unifying approach to control such workflows. To realize Quality of Data-driven workflows, we present an architecture realizing the presented approach and a WS-Policy-based language to describe Quality of Data requirements and capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的仿真工作流的质量
模拟的特点是长时间运行的计算和复杂的数据处理任务伴随着重要的数据依赖关系。工作流技术有助于自动化和引导此类模拟。数据框架的质量用于确定模拟数据的好坏,例如,它们根据数值求解器的可用性分析输入数据的准确性。在本文中,我们提出了使用评估数据质量来引导仿真工作流程的通用方法。这样可以确保预定义的需求,例如精确的最终结果或短的执行时间,即使在开始执行模拟工作流之后也能得到满足。我们讨论了在所有相关级别(工作流、服务、算法)上指导模拟的机制,并定义了控制这些工作流的统一方法。为了实现数据驱动工作流的质量,我们提出了一个实现所提方法的体系结构和一个基于ws - policy的语言来描述数据质量需求和功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scientific Workflow Interchanging through Patterns: Reversals and Lessons Learned Shape Analysis Using the Spectral Graph Wavelet Transform Provenance analysis: Towards quality provenance Fast confidential search for bio-medical data using Bloom filters and Homomorphic Cryptography Calibration of watershed models using cloud computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1