{"title":"Development Process, Quantitative Models, and Future Directions in Driving Analysis of Urban Expansion","authors":"Xuefeng Guan, Jingbo Li, Changlan Yang, Weiran Xing","doi":"10.3390/ijgi12040174","DOIUrl":null,"url":null,"abstract":"Driving analysis of urban expansion (DAUE) is usually implemented to identify the driving factors and their corresponding driving effects/mechanisms for the expansion processes of urban land, aiming to provide scientific guidance for urban planning and management. Based on a thorough analysis and summarization of the development process and quantitative models, four major limitations in existing DAUE studies have been uncovered: (1) the interactions in hierarchical urban systems have not been fully explored; (2) the employed data cannot fully depict urban dynamic through finer social perspectives; (3) the employed models cannot deal with high-level feature correlations; and (4) the simulation and analysis models are still not intrinsically integrated. Four future directions are thus proposed: (1) to pay attention to the hierarchical characteristics of urban systems and conduct multi-scale research on the complex interactions within them to capture dynamic features; (2) to leverage remote sensing data so as to obtain diverse urban expansion data and assimilate multi-source spatiotemporal big data to supplement novel socio-economic driving factors; (3) to integrate with interpretable data-driven machine learning techniques to bolster the performance and reliability of DAUE models; and (4) to construct mechanism-coupled urban simulation to achieve a complementary enhancement and facilitate theory development and testing for urban land systems.","PeriodicalId":14614,"journal":{"name":"ISPRS Int. J. Geo Inf.","volume":"25 1","pages":"174"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Int. J. Geo Inf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijgi12040174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Driving analysis of urban expansion (DAUE) is usually implemented to identify the driving factors and their corresponding driving effects/mechanisms for the expansion processes of urban land, aiming to provide scientific guidance for urban planning and management. Based on a thorough analysis and summarization of the development process and quantitative models, four major limitations in existing DAUE studies have been uncovered: (1) the interactions in hierarchical urban systems have not been fully explored; (2) the employed data cannot fully depict urban dynamic through finer social perspectives; (3) the employed models cannot deal with high-level feature correlations; and (4) the simulation and analysis models are still not intrinsically integrated. Four future directions are thus proposed: (1) to pay attention to the hierarchical characteristics of urban systems and conduct multi-scale research on the complex interactions within them to capture dynamic features; (2) to leverage remote sensing data so as to obtain diverse urban expansion data and assimilate multi-source spatiotemporal big data to supplement novel socio-economic driving factors; (3) to integrate with interpretable data-driven machine learning techniques to bolster the performance and reliability of DAUE models; and (4) to construct mechanism-coupled urban simulation to achieve a complementary enhancement and facilitate theory development and testing for urban land systems.