Poly (Vinylidene Difluoride) Polymer in 1-Ethyl-3-methylimidazolium Acetate and Acetic Acid Containing Solvents: Tunable and Recoverable Solvent Media to Induce Crystalline Phase Transition and Porosity
S. G. Khokarale, P. Jablonski, D. Nikjoo, V. M. Dinh, Ola Sundman, K. Irgum, J. Mikkola
{"title":"Poly (Vinylidene Difluoride) Polymer in 1-Ethyl-3-methylimidazolium Acetate and Acetic Acid Containing Solvents: Tunable and Recoverable Solvent Media to Induce Crystalline Phase Transition and Porosity","authors":"S. G. Khokarale, P. Jablonski, D. Nikjoo, V. M. Dinh, Ola Sundman, K. Irgum, J. Mikkola","doi":"10.3390/suschem3040028","DOIUrl":null,"url":null,"abstract":"In this report, 1-ethyl-3-methylimidazolium acetate, [EMIM][AcO] ionic liquid (IL) and acetic acid (AA) comprised solvents were used for the thermal treatment of poly (vinylidene difluoride), PVDF. Here, besides the various combinations of IL and AA in solvents, the pure IL and AA were also applied as a solvent upon thermal treatments. The samples obtained after the treatment were analysed for structural and crystalline phase changes, porosity, and molecular weight distribution with various analytical techniques. The Kamlet-Taft parameters measurement of the IL and AA containing solvents with different solvatochromic dyes was also performed to examine their solvent properties and correlate with the properties of the treated PVDF materials. The treatment of PVDF with pure IL results in the formation of highly carbonaceous material due to extensive dehydroflurination (DHF) as well as possibly successive cross-linking in the polymer chains. Upon IL and AA combined solvent treatment, the neat PVDF which composed of both α- and β crystalline phases was transformed to porous and β-phase rich material whereas in case of pure AA the non-porous and pure α-phase polymeric entity was obtained. A combined mixture of IL and AA resulted in a limited the DHF process and subsequent cross-linking in the polymer chains of PVDF allowed the formation of a porous material. It was observed that the porosity of the thermally treated materials was steadily decreasing with increase in the amount of AA in solvents composition and solvent with an AA:IL mole ratio of 2:1 resulted in a PVDF material with the highest porosity amongst the applied solvents. A recovery method for the IL and AA combined solvent after the thermal treatment of PVDF was also established. Hence, with varying the type of solvents in terms of composition, the highly carbonaceous materials as well as materials with different porosities as well as crystalline phases can be obtained. Most importantly here, we introduced new IL and AA containing recoverable solvents for the synthesis of porous PVDF material with the electroactive β-phase.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/suschem3040028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this report, 1-ethyl-3-methylimidazolium acetate, [EMIM][AcO] ionic liquid (IL) and acetic acid (AA) comprised solvents were used for the thermal treatment of poly (vinylidene difluoride), PVDF. Here, besides the various combinations of IL and AA in solvents, the pure IL and AA were also applied as a solvent upon thermal treatments. The samples obtained after the treatment were analysed for structural and crystalline phase changes, porosity, and molecular weight distribution with various analytical techniques. The Kamlet-Taft parameters measurement of the IL and AA containing solvents with different solvatochromic dyes was also performed to examine their solvent properties and correlate with the properties of the treated PVDF materials. The treatment of PVDF with pure IL results in the formation of highly carbonaceous material due to extensive dehydroflurination (DHF) as well as possibly successive cross-linking in the polymer chains. Upon IL and AA combined solvent treatment, the neat PVDF which composed of both α- and β crystalline phases was transformed to porous and β-phase rich material whereas in case of pure AA the non-porous and pure α-phase polymeric entity was obtained. A combined mixture of IL and AA resulted in a limited the DHF process and subsequent cross-linking in the polymer chains of PVDF allowed the formation of a porous material. It was observed that the porosity of the thermally treated materials was steadily decreasing with increase in the amount of AA in solvents composition and solvent with an AA:IL mole ratio of 2:1 resulted in a PVDF material with the highest porosity amongst the applied solvents. A recovery method for the IL and AA combined solvent after the thermal treatment of PVDF was also established. Hence, with varying the type of solvents in terms of composition, the highly carbonaceous materials as well as materials with different porosities as well as crystalline phases can be obtained. Most importantly here, we introduced new IL and AA containing recoverable solvents for the synthesis of porous PVDF material with the electroactive β-phase.