Minimal surfaces and multifunctionality

S. Torquato, A. Donev
{"title":"Minimal surfaces and multifunctionality","authors":"S. Torquato, A. Donev","doi":"10.1098/rspa.2003.1269","DOIUrl":null,"url":null,"abstract":"Triply periodic minimal surfaces are objects of great interest to physical scientists, biologists and mathematicians. It has recently been shown that triply periodic two-phase bicontinuous composites with interfaces that are the Schwartz primitive (P) and diamond (D) minimal surfaces are not only geometrically extremal but extremal for simultaneous transport of heat and electricity. More importantly, here we further establish the multifunctionality of such two-phase systems by showing that they are also extremal when a competition is set up between the effective bulk modulus and the electrical (or thermal) conductivity of the composite. The implications of our findings for materials science and biology, which provides the ultimate multifunctional materials, are discussed.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2003.1269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114

Abstract

Triply periodic minimal surfaces are objects of great interest to physical scientists, biologists and mathematicians. It has recently been shown that triply periodic two-phase bicontinuous composites with interfaces that are the Schwartz primitive (P) and diamond (D) minimal surfaces are not only geometrically extremal but extremal for simultaneous transport of heat and electricity. More importantly, here we further establish the multifunctionality of such two-phase systems by showing that they are also extremal when a competition is set up between the effective bulk modulus and the electrical (or thermal) conductivity of the composite. The implications of our findings for materials science and biology, which provides the ultimate multifunctional materials, are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最小的表面和多功能
三周期极小曲面是物理科学家、生物学家和数学家非常感兴趣的对象。最近的研究表明,具有施瓦茨基元(P)和金刚石(D)最小表面的三周期两相双连续复合材料不仅在几何上是极值的,而且在热和电同时传输方面也是极值的。更重要的是,在这里,我们进一步建立了这种两相系统的多功能性,表明当复合材料的有效体积模量和电导率(或导热性)之间存在竞争时,它们也是极端的。讨论了我们的发现对材料科学和生物学的影响,这提供了最终的多功能材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
期刊最新文献
Plankton Nanocrystalline ceria imparts better high–temperature protection Spectral concentrations and resonances of a second–order block operator matrix and an associated λ–rational Sturm-Liouville problem Mechanical field fluctuations in polycrystals estimated by homogenization techniques Oblique scattering of plane flexural–gravity waves by heterogeneities in sea–ice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1