{"title":"A novel method for diagnosing land-atmosphere coupling sensitivity in a single-column model","authors":"F. M. Hay-Chapman, P. Dirmeyer","doi":"10.1175/jhm-d-22-0237.1","DOIUrl":null,"url":null,"abstract":"\nThe response of boundary layer properties and cloudiness to changes in surface evaporative fraction (EF) is investigated in a single-column model to quantify the locally coupled impact of sub-grid surface variations on the atmosphere during summer. Sensitive coupling days are defined when the model atmosphere exhibits large variations across a range of EF centered on the analyzed value. Coupling sensitivity exists as both positive (cloudiness increases with EF) and negative (clouds increase with decreasing EF) feedback regimes. The positive regime manifests in shallow convection situations, which are capped by a strengthened inversion and subsidence, restricting the vertical extent of convection to just above the boundary layer. Surfaces with larger EF (greater surface latent heat flux) can inject more moisture into the vertically confined system, lowering the cloud base and an increasing cloud liquid water path (LWP). Negative feedback regimes tend to manifest when large-scale deep convection, such as from mesoscale convective systems and fronts, is advected through the domain, where convection strengthens over surfaces with a lower EF (greater surface sensible heat flux). The invigoration of these systems by the land surface leads to an increase in LWP through strengthened updrafts and stronger coupling between the boundary layer and the free atmosphere. These results apply in the absence of heterogeneity-induced mesoscale circulations, providing a one-dimensional dynamical perspective on the effect of surface heterogeneity. This study provides a framework intermediate complexity, lying between parcel theory and high-resolution coupled land-atmosphere modeling, and therefore isolates the relevant first-order processes in land-atmosphere interactions.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"1 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jhm-d-22-0237.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
The response of boundary layer properties and cloudiness to changes in surface evaporative fraction (EF) is investigated in a single-column model to quantify the locally coupled impact of sub-grid surface variations on the atmosphere during summer. Sensitive coupling days are defined when the model atmosphere exhibits large variations across a range of EF centered on the analyzed value. Coupling sensitivity exists as both positive (cloudiness increases with EF) and negative (clouds increase with decreasing EF) feedback regimes. The positive regime manifests in shallow convection situations, which are capped by a strengthened inversion and subsidence, restricting the vertical extent of convection to just above the boundary layer. Surfaces with larger EF (greater surface latent heat flux) can inject more moisture into the vertically confined system, lowering the cloud base and an increasing cloud liquid water path (LWP). Negative feedback regimes tend to manifest when large-scale deep convection, such as from mesoscale convective systems and fronts, is advected through the domain, where convection strengthens over surfaces with a lower EF (greater surface sensible heat flux). The invigoration of these systems by the land surface leads to an increase in LWP through strengthened updrafts and stronger coupling between the boundary layer and the free atmosphere. These results apply in the absence of heterogeneity-induced mesoscale circulations, providing a one-dimensional dynamical perspective on the effect of surface heterogeneity. This study provides a framework intermediate complexity, lying between parcel theory and high-resolution coupled land-atmosphere modeling, and therefore isolates the relevant first-order processes in land-atmosphere interactions.
期刊介绍:
The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.