Ex vivo evaluation of blood coagulation on endothelial glycocalyx-inspired surfaces using thromboelastography.

In vitro models Pub Date : 2021-10-29 eCollection Date: 2022-02-01 DOI:10.1007/s44164-021-00001-w
Yanyi Zang, Jessi R Vlcek, Jamie Cuchiaro, Ketul C Popat, Christine S Olver, Matt J Kipper, Melissa M Reynolds
{"title":"Ex vivo evaluation of blood coagulation on endothelial glycocalyx-inspired surfaces using thromboelastography.","authors":"Yanyi Zang, Jessi R Vlcek, Jamie Cuchiaro, Ketul C Popat, Christine S Olver, Matt J Kipper, Melissa M Reynolds","doi":"10.1007/s44164-021-00001-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Present blood-contacting materials have not yet demonstrated to be effective in reducing blood coagulation without causing additional side effects clinically. We have developed an endothelial glycocalyx-inspired biomimetic surface that combines nanotopography, heparin presentation, and nitric oxide (NO)-releasing features. The resulting modified surfaces have already shown promise in reducing unfavorable blood-material interactions using platelet-rich plasma. In this study, the efficacy of modified surfaces for reducing coagulation of human whole blood was measured. In addition, the effects of leached polysaccharides and chemical modification of the modified surfaces were evaluated.</p><p><strong>Methods: </strong>Leached polysaccharides in the incubation solution were detected by a refractive index method to determine the potential influences of these modified surfaces on the blood coagulation observation. Chemical modifications by the nitrosation process on the polysaccharides in the modified surfaces were detected using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Clot formation parameters were measured using thromboelastography (TEG), a clinically relevant technique to evaluate whole blood coagulation.</p><p><strong>Results: </strong>No polysaccharides were detected in the heparinized polyelectrolyte multilayer-coated titania nanotube array surface (TiO<sub>2</sub>NT + PEM) incubation solution; however, polysaccharides were detected from NO-releasing TiO<sub>2</sub>NT + PEM surface (TiO<sub>2</sub>NT + PEM + NO) incubation solution both after the nitrosation process and after all NO was released. The structures of thiolated chitosan and heparin were altered by <i>t</i>-butyl nitrite. All heparin-containing surfaces were shown to slow or inhibit clot formation.</p><p><strong>Conclusion: </strong>This study is the first to evaluate these endothelial glycocalyx-inspired surfaces using clinically relevant parameters, as well as proposing potential influences of these modified surfaces on the inhibition of clot formation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-021-00001-w.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"5 1","pages":"59-71"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749744/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-021-00001-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Present blood-contacting materials have not yet demonstrated to be effective in reducing blood coagulation without causing additional side effects clinically. We have developed an endothelial glycocalyx-inspired biomimetic surface that combines nanotopography, heparin presentation, and nitric oxide (NO)-releasing features. The resulting modified surfaces have already shown promise in reducing unfavorable blood-material interactions using platelet-rich plasma. In this study, the efficacy of modified surfaces for reducing coagulation of human whole blood was measured. In addition, the effects of leached polysaccharides and chemical modification of the modified surfaces were evaluated.

Methods: Leached polysaccharides in the incubation solution were detected by a refractive index method to determine the potential influences of these modified surfaces on the blood coagulation observation. Chemical modifications by the nitrosation process on the polysaccharides in the modified surfaces were detected using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Clot formation parameters were measured using thromboelastography (TEG), a clinically relevant technique to evaluate whole blood coagulation.

Results: No polysaccharides were detected in the heparinized polyelectrolyte multilayer-coated titania nanotube array surface (TiO2NT + PEM) incubation solution; however, polysaccharides were detected from NO-releasing TiO2NT + PEM surface (TiO2NT + PEM + NO) incubation solution both after the nitrosation process and after all NO was released. The structures of thiolated chitosan and heparin were altered by t-butyl nitrite. All heparin-containing surfaces were shown to slow or inhibit clot formation.

Conclusion: This study is the first to evaluate these endothelial glycocalyx-inspired surfaces using clinically relevant parameters, as well as proposing potential influences of these modified surfaces on the inhibition of clot formation.

Supplementary information: The online version contains supplementary material available at 10.1007/s44164-021-00001-w.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体外应用血栓弹性成像评估内皮糖萼激发表面的血液凝固
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines. Adipo-on-chip: a microphysiological system to culture human mesenchymal stem cells with improved adipogenic differentiation. Hybrid additive manufacturing for Zn-Mg casting for biomedical application. Development and characterisation of a novel complex triple cell culture model of the human alveolar epithelial barrier.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1