Sound Radiation of Locally Resonant Unidirectionally Ribbed Plates

P. Fossat, M. Ichchou
{"title":"Sound Radiation of Locally Resonant Unidirectionally Ribbed Plates","authors":"P. Fossat, M. Ichchou","doi":"10.1115/imece2021-70987","DOIUrl":null,"url":null,"abstract":"\n This paper suggests a comprehensive case study of acoustic radiation from ribbed plate with inner resonance. Based on explicit design rules and homogenized model for flexural waves, it shows that bending waves propagation significantly differs from classical models in terms of wavenumber features in the neighborhood of local resonances, and comments on the influence of the atypical structural response on the radiated pressure field. The investigation of the acoustic radiation from an infinite and finite ribbed plate is proposed. The trend of the resulting radiated pressure fields from the homogenized model matches with classical models outside frequency bands associated with local resonance, however inner resonance yields additional frequency ranges in which acoustic radiation is either strongly reduced or enhanced. For both mechanical and acoustic responses, theoretical results are successfully compared with finite element method. Further consideration may focus on the radiation mechanisms with coupled bending and torsion in the stiffner.","PeriodicalId":23648,"journal":{"name":"Volume 1: Acoustics, Vibration, and Phononics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-70987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper suggests a comprehensive case study of acoustic radiation from ribbed plate with inner resonance. Based on explicit design rules and homogenized model for flexural waves, it shows that bending waves propagation significantly differs from classical models in terms of wavenumber features in the neighborhood of local resonances, and comments on the influence of the atypical structural response on the radiated pressure field. The investigation of the acoustic radiation from an infinite and finite ribbed plate is proposed. The trend of the resulting radiated pressure fields from the homogenized model matches with classical models outside frequency bands associated with local resonance, however inner resonance yields additional frequency ranges in which acoustic radiation is either strongly reduced or enhanced. For both mechanical and acoustic responses, theoretical results are successfully compared with finite element method. Further consideration may focus on the radiation mechanisms with coupled bending and torsion in the stiffner.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部共振单向肋板的声辐射
本文对带内共振肋板的声辐射进行了全面的实例研究。基于弯曲波的显式设计规则和均匀化模型,表明弯曲波在局部共振附近的波数特征与经典模型有显著差异,并评论了非典型结构响应对辐射压力场的影响。提出了无限肋板和有限肋板声辐射的研究方法。均质化模型得到的辐射压力场趋势与经典模型在局域共振相关频带外的趋势相吻合,但在局域共振范围内,声辐射会被强烈减弱或增强。对于力学和声学响应,理论结果与有限元方法成功地进行了比较。进一步的考虑可以集中在加劲器中弯曲和扭转耦合的辐射机制上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Machine Learning Framework for Physics-Based Multi-Fidelity Modeling and Health Monitoring for a Composite Wing Design and Numerical Analysis of Locally-Resonant Meta-Lattice Structure for Vibration Attenuation Research on Testing Method and Device of Sensitivity Consistency of Acoustic Emission Sensors Unsupervised Online Anomaly Detection of Metal Additive Manufacturing Processes via a Statistical Time-Frequency Domain Approach Nonlinear Electro-Mechanical Impedance Spectroscopy for Comprehensive Monitoring of Carbon Fiber Reinforced Composite Laminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1