Review of Optimization in Improving Extreme Learning Machine

Nilesh Rathod, S. Wankhade
{"title":"Review of Optimization in Improving Extreme Learning Machine","authors":"Nilesh Rathod, S. Wankhade","doi":"10.4108/eai.17-9-2021.170960","DOIUrl":null,"url":null,"abstract":"Now a days Extreme Learning Machine has gained a lot of interest because of its noteworthy qualities over single hiddenlayer feedforward neural networks and the kernel functions. Even if ELM has many advantages, it has some potential shortcomings such as performance sensitivity to the underlying state of the hidden neurons, input weights and the choice of functions of activation. To overcome the limitations of traditional ELM, analysts have devised numerical methods to optimise specific parts of ELM in order to enhance ELM performance for a variety of complicated difficulties and applications. Hence through this study, we intend to study the different algorithms developed for optimizing the ELM to enhance its performance in the aspects of survey criteria such as datasets, algorithm, objectives, training time, accuracy, error rate and the hidden neurons. This study will help other researchers to find out the research issues that lowering the performance of the ELM.","PeriodicalId":33474,"journal":{"name":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","volume":"48 1","pages":"e2"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.17-9-2021.170960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

Now a days Extreme Learning Machine has gained a lot of interest because of its noteworthy qualities over single hiddenlayer feedforward neural networks and the kernel functions. Even if ELM has many advantages, it has some potential shortcomings such as performance sensitivity to the underlying state of the hidden neurons, input weights and the choice of functions of activation. To overcome the limitations of traditional ELM, analysts have devised numerical methods to optimise specific parts of ELM in order to enhance ELM performance for a variety of complicated difficulties and applications. Hence through this study, we intend to study the different algorithms developed for optimizing the ELM to enhance its performance in the aspects of survey criteria such as datasets, algorithm, objectives, training time, accuracy, error rate and the hidden neurons. This study will help other researchers to find out the research issues that lowering the performance of the ELM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进极限学习机的优化研究综述
如今,极限学习机因其优于单隐藏层前馈神经网络和核函数的显著特性而获得了很多关注。即使ELM有许多优点,它也有一些潜在的缺点,如对隐藏神经元的底层状态的性能敏感性,输入权值和激活函数的选择。为了克服传统ELM的局限性,分析人员设计了数值方法来优化ELM的特定部分,以提高ELM在各种复杂困难和应用中的性能。因此,通过本研究,我们打算研究用于优化ELM的不同算法,以提高其在数据集、算法、目标、训练时间、准确率、错误率和隐藏神经元等调查标准方面的性能。本研究将有助于其他研究者发现降低ELM性能的研究问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
15
审稿时长
10 weeks
期刊最新文献
ViMedNER: A Medical Named Entity Recognition Dataset for Vietnamese Distributed Spatially Non-Stationary Channel Estimation for Extremely-Large Antenna Systems On the Performance of the Relay Selection in Multi-hop Cluster-based Wireless Networks with Multiple Eavesdroppers Under Equally Correlated Rayleigh Fading Improving Performance of the Typical User in the Indoor Cooperative NOMA Millimeter Wave Networks with Presence of Walls Real-time Single-Channel EOG removal based on Empirical Mode Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1