{"title":"Design of New Classes of Flexible Hang-Offs for Rigid Risers","authors":"C. Wajnikonis","doi":"10.4043/29609-MS","DOIUrl":null,"url":null,"abstract":"\n This paper introduces new classes of hang-offs for Steel Catenary Risers (SCRs) and Steel Lazy Wave Risers (SLWRs). Bending and tension loads are totally decoupled in the riser hang-offs presented. The new hang-offs can be designed for any temperature or pressure that can be supported by SCRs or SLWRs. The novel devices have rotational stiffnesses considerably lower than are those of Flexible Joints or Titanium Stress Joints (TSJs). This results in fatigue life improvements in the upper regions of risers and in supporting vessel structure. The new hang-offs can be easily designed for greater riser deflections than are those feasible with traditional hang-offs. Methodology used in preliminary design is outlined. Simplified preliminary calculations are included and results of non-linear (large deflection) Finite Elements Analyses (FEAs) are provided. This work highlights possible practical implications of the new designs for the envelopes of the use of SCRs and SLWRs.","PeriodicalId":10968,"journal":{"name":"Day 3 Wed, May 08, 2019","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29609-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces new classes of hang-offs for Steel Catenary Risers (SCRs) and Steel Lazy Wave Risers (SLWRs). Bending and tension loads are totally decoupled in the riser hang-offs presented. The new hang-offs can be designed for any temperature or pressure that can be supported by SCRs or SLWRs. The novel devices have rotational stiffnesses considerably lower than are those of Flexible Joints or Titanium Stress Joints (TSJs). This results in fatigue life improvements in the upper regions of risers and in supporting vessel structure. The new hang-offs can be easily designed for greater riser deflections than are those feasible with traditional hang-offs. Methodology used in preliminary design is outlined. Simplified preliminary calculations are included and results of non-linear (large deflection) Finite Elements Analyses (FEAs) are provided. This work highlights possible practical implications of the new designs for the envelopes of the use of SCRs and SLWRs.