Use of Quantitative Structure Activity Relationships in Prediction of CMC of Nonionic Surfactants

M. Jalali-Heravi, E. Konouz
{"title":"Use of Quantitative Structure Activity Relationships in Prediction of CMC of Nonionic Surfactants","authors":"M. Jalali-Heravi, E. Konouz","doi":"10.1002/1521-3838(200004)19:2<135::AID-QSAR135>3.0.CO;2-T","DOIUrl":null,"url":null,"abstract":"The CMC of a set of 51 alkylpolyoxyethylene glycol ethers, R(EO)m, and alkylphenol (ethylene oxide) ethers, Rϕ(EO)m, was related to topological, electronic and molecular structure parameters using a stepwise regression method. In development of the models linear and quadratic terms were used without the use of cross terms. Different strategies including Akaike Information Criterion (AIC) were used for choosing the best model. Specification of the best model in agreement with the experiment indicates that volume of the hydrophobic group and surface area of the molecule play a major role in the mechanism of micellization of nonionic surfactants. It was demonstrated that the CMC of these compounds depend upon the orientation of carbon atoms at the interface of two phases. The predicted values of CMC using the best model for R(EO)m molecules containing even number of EO groups are better than that for the molecules with odd number of EOs.","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1521-3838(200004)19:2<135::AID-QSAR135>3.0.CO;2-T","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The CMC of a set of 51 alkylpolyoxyethylene glycol ethers, R(EO)m, and alkylphenol (ethylene oxide) ethers, Rϕ(EO)m, was related to topological, electronic and molecular structure parameters using a stepwise regression method. In development of the models linear and quadratic terms were used without the use of cross terms. Different strategies including Akaike Information Criterion (AIC) were used for choosing the best model. Specification of the best model in agreement with the experiment indicates that volume of the hydrophobic group and surface area of the molecule play a major role in the mechanism of micellization of nonionic surfactants. It was demonstrated that the CMC of these compounds depend upon the orientation of carbon atoms at the interface of two phases. The predicted values of CMC using the best model for R(EO)m molecules containing even number of EO groups are better than that for the molecules with odd number of EOs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定量构效关系在非离子表面活性剂CMC预测中的应用
采用逐步回归方法对51种烷基聚氧乙二醇醚R(EO)m和烷基酚(环氧乙烷)醚rφ (EO)m的CMC与拓扑结构、电子结构和分子结构参数的关系进行了研究。在模型的开发中,使用了线性项和二次项,而不使用交叉项。采用赤池信息准则(Akaike Information Criterion, AIC)等不同策略选择最佳模型。最佳模型的确定与实验结果一致,表明疏水基团的体积和分子的表面积对非离子表面活性剂的胶束化机理起主要作用。结果表明,这些化合物的CMC取决于两相界面上碳原子的取向。最佳模型对含有偶数个EO基团的R(EO)m分子的CMC预测值优于含有奇数个EO基团的R(EO)m分子的CMC预测值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstracts of publications related to QASR Mechanistic Study on N‐Demethylation Catalyzed with P450 by Quantitative Structure Activity Relationship using Electronic Properties of 4‐Substituted N,N‐Dimethylaniline 3D QSAR of Serotonin Transporter Ligands: CoMFA and CoMSIA Studies Scaffold Searching: Automated Identification of Similar Ring Systems for the Design of Combinatorial Libraries Theoretical Prediction of the Phenoxyl Radical Formation Capacity and Cyclooxygenase Inhibition Relationships by Phenolic Compounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1