Quantized Compressed Sensing for Communication-Efficient Federated Learning

Yong-Nam Oh, N. Lee, Yo-Seb Jeon
{"title":"Quantized Compressed Sensing for Communication-Efficient Federated Learning","authors":"Yong-Nam Oh, N. Lee, Yo-Seb Jeon","doi":"10.1109/GCWkshps52748.2021.9682076","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a decentralized artificial intelligence technique for training a global model on a parameter server (PS) through collaboration with wireless devices, each with its own local training data set. In this paper, we present a communication-efficient FL framework which consists of gradient compression and reconstruction strategies based on quantized compressed sensing (QCS). The key idea of the gradient compression strategy is to compress-and-quantize a local gradient vector computed at each device after sparsifying this vector in a block wise fashion. Our gradient compression strategy can make communication overhead less than one bit per gradient entry. For accurate reconstruction of the local gradient from the compressed signals at the PS, we employ a expectation-maximization generalized-approximate-message-passing algorithm. The algorithm iteratively computes an approximate minimum mean square error solution of the local gradient, while learning the unknown model parameters of the Bernoulli Gaussian-mixture prior. Using the MNIST data set, we demonstrate that the presented FL framework can achieve almost identical classification performance with the case that performs no compression, while achieving a significant reduction of communication overhead.","PeriodicalId":6802,"journal":{"name":"2021 IEEE Globecom Workshops (GC Wkshps)","volume":"42 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps52748.2021.9682076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Federated learning (FL) is a decentralized artificial intelligence technique for training a global model on a parameter server (PS) through collaboration with wireless devices, each with its own local training data set. In this paper, we present a communication-efficient FL framework which consists of gradient compression and reconstruction strategies based on quantized compressed sensing (QCS). The key idea of the gradient compression strategy is to compress-and-quantize a local gradient vector computed at each device after sparsifying this vector in a block wise fashion. Our gradient compression strategy can make communication overhead less than one bit per gradient entry. For accurate reconstruction of the local gradient from the compressed signals at the PS, we employ a expectation-maximization generalized-approximate-message-passing algorithm. The algorithm iteratively computes an approximate minimum mean square error solution of the local gradient, while learning the unknown model parameters of the Bernoulli Gaussian-mixture prior. Using the MNIST data set, we demonstrate that the presented FL framework can achieve almost identical classification performance with the case that performs no compression, while achieving a significant reduction of communication overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于通信高效联邦学习的量化压缩感知
联邦学习(FL)是一种分散的人工智能技术,通过与无线设备的协作,在参数服务器(PS)上训练全局模型,每个无线设备都有自己的本地训练数据集。本文提出了一种基于量化压缩感知(QCS)的梯度压缩和重构策略的高效通信FL框架。梯度压缩策略的关键思想是压缩并量化在每个设备上计算的局部梯度向量,然后以块方式对该向量进行稀疏化。我们的梯度压缩策略可以使每个梯度入口的通信开销小于1位。为了从压缩信号中精确地重建局部梯度,我们采用了期望最大化广义近似消息传递算法。该算法迭代计算局部梯度的近似最小均方误差解,同时学习未知的伯努利-高斯混合先验模型参数。使用MNIST数据集,我们证明了所提出的FL框架可以在不执行压缩的情况下实现几乎相同的分类性能,同时显著降低了通信开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Blockchain-based Approach for Optimal Energy Dispatch and Fault Reporting in P2P Microgrid Joint Beamforming and BS Selection for Energy-Efficient Communications via Aerial-RIS Security and privacy issues of data-over-sound technologies used in IoT healthcare devices Joint Deployment Design and Power Control for UAV-enabled Covert Communications Leveraging Machine Learning and SDN-Fog Infrastructure to Mitigate Flood Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1