Robot arm navigation using deep deterministic policy gradient algorithms

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Experimental & Theoretical Artificial Intelligence Pub Date : 2022-02-08 DOI:10.1080/0952813X.2021.1960640
W. Farag
{"title":"Robot arm navigation using deep deterministic policy gradient algorithms","authors":"W. Farag","doi":"10.1080/0952813X.2021.1960640","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, the Deep Deterministic Policy Gradient (DDPG) reinforcement learning algorithm is employed to enable a double-jointed robot arm to reach continuously changing target locations. The experimentation of the algorithm is carried out by training an agent to control the movement of this double-jointed robot arm. The architectures of the actor and cretic networks are meticulously designed and the DDPG hyperparameters are carefully tuned. An enhanced version of the DDPG is also presented to handle multiple robot arms simultaneously. The trained agents are successfully tested in the Unity Machine Learning Agents environment for controlling both a single robot arm as well as multiple simultaneous robot arms. The testing shows the robust performance of the DDPG algorithm for empowering robot arm manoeuvring in complex environments.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"1 1","pages":"617 - 627"},"PeriodicalIF":1.7000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2021.1960640","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In this paper, the Deep Deterministic Policy Gradient (DDPG) reinforcement learning algorithm is employed to enable a double-jointed robot arm to reach continuously changing target locations. The experimentation of the algorithm is carried out by training an agent to control the movement of this double-jointed robot arm. The architectures of the actor and cretic networks are meticulously designed and the DDPG hyperparameters are carefully tuned. An enhanced version of the DDPG is also presented to handle multiple robot arms simultaneously. The trained agents are successfully tested in the Unity Machine Learning Agents environment for controlling both a single robot arm as well as multiple simultaneous robot arms. The testing shows the robust performance of the DDPG algorithm for empowering robot arm manoeuvring in complex environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度确定性策略梯度算法的机械臂导航
本文采用深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)强化学习算法,使双关节机械臂能够到达连续变化的目标位置。通过训练智能体来控制双关节机械臂的运动,对该算法进行了实验。actor和critical网络的架构被精心设计,DDPG超参数被精心调整。DDPG的一个增强版本也提出了同时处理多个机器人手臂。经过训练的代理在Unity机器学习代理环境中成功测试,以控制单个机器人手臂以及多个同时控制的机器人手臂。实验结果表明,DDPG算法具有较强的鲁棒性,可以增强机械臂在复杂环境下的机动能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
4.50%
发文量
89
审稿时长
>12 weeks
期刊介绍: Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research. The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following: • cognitive science • games • learning • knowledge representation • memory and neural system modelling • perception • problem-solving
期刊最新文献
Occlusive target recognition method of sorting robot based on anchor-free detection network An effectual underwater image enhancement framework using adaptive trans-resunet ++ with attention mechanism An experimental study of sentiment classification using deep-based models with various word embedding techniques Sign language video to text conversion via optimised LSTM with improved motion estimation An efficient safest route prediction-based route discovery mechanism for drivers using improved golden tortoise beetle optimizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1