Application of Neural Networks in Diagnosis of Valve Physiological Heart Disease from Heart Sounds

O. Mokhlessi, H. M. Rad, N. Mehrshad, A. Mokhlessi
{"title":"Application of Neural Networks in Diagnosis of Valve Physiological Heart Disease from Heart Sounds","authors":"O. Mokhlessi, H. M. Rad, N. Mehrshad, A. Mokhlessi","doi":"10.5923/J.AJBE.20110101.05","DOIUrl":null,"url":null,"abstract":"Classification of the sound heart into different valve-physiological heart disease categories is a complex pattern recognition task. In this paper application of various types of neural networks are introduced for diagnosing heart disease). At first a method is described for extracting useful features from the sound hearts and then a simple algorithm is introduced for heart sounds recognition. In fact, feature vectors are formed based on a wavelet decomposition of the sounds. The heart sound diseases are classified into normal heart sound and the other six valve physiological heart categories. Different types of artificial neural networks (ANNs) are used for this purpose. Those are Multilayer perceptron (MLP) with back propagation training algorithm, Elman Neural Network (ENN) and Radial Basis Function (RBF) Network. Expensive experimental results show an average recognition score of 81.25% to 96.42%.","PeriodicalId":7620,"journal":{"name":"American Journal of Biomedical Engineering","volume":"1 1","pages":"26-34"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.AJBE.20110101.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Classification of the sound heart into different valve-physiological heart disease categories is a complex pattern recognition task. In this paper application of various types of neural networks are introduced for diagnosing heart disease). At first a method is described for extracting useful features from the sound hearts and then a simple algorithm is introduced for heart sounds recognition. In fact, feature vectors are formed based on a wavelet decomposition of the sounds. The heart sound diseases are classified into normal heart sound and the other six valve physiological heart categories. Different types of artificial neural networks (ANNs) are used for this purpose. Those are Multilayer perceptron (MLP) with back propagation training algorithm, Elman Neural Network (ENN) and Radial Basis Function (RBF) Network. Expensive experimental results show an average recognition score of 81.25% to 96.42%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络在心音诊断瓣膜生理性心脏病中的应用
将健全的心脏划分为不同的瓣膜生理心脏病类别是一项复杂的模式识别任务。本文介绍了各类神经网络在心脏病诊断中的应用。首先描述了一种从心音中提取有用特征的方法,然后介绍了一种简单的心音识别算法。实际上,特征向量是基于声音的小波分解而形成的。心音疾病分为正常心音和其他六种瓣膜生理性心音。不同类型的人工神经网络(ann)用于此目的。它们是具有反向传播训练算法的多层感知器(MLP)、Elman神经网络(ENN)和径向基函数(RBF)网络。昂贵的实验结果表明,平均识别率为81.25% ~ 96.42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Robotic Compliance and Bone Bending on Simulated in vivo Knee Kinematics. A Measurement-Quality Body-Worn Physiological Monitor for Use in Harsh Environments Network Dynamics and Spontaneous Oscillations in a Developing Neuronal Culture Cardiovascular Modifications and Stratification of the Arrhythmic Risk in Young and Master Athletes The mechanical properties of a porous ceramic derived from a 30 nm sized particle based powder of hydroxyapatite for potential hard tissue engineering applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1