APPLICATION OF LUMINESCENCE AND ABSORPTION SPECTRA TO CONTROL THE FORMATION OF A HETEROJUNCTION IN NANOSTRUCTURED RUTILE FILMS SENSITIZED BY CDS QUANTUM DOTS

S. Kuschev, L. Y. Leonova, Anatoly N. Latyshev, O. Ovchinnikov, E. Popova
{"title":"APPLICATION OF LUMINESCENCE AND ABSORPTION SPECTRA TO CONTROL THE FORMATION OF A HETEROJUNCTION IN NANOSTRUCTURED RUTILE FILMS SENSITIZED BY CDS QUANTUM DOTS","authors":"S. Kuschev, L. Y. Leonova, Anatoly N. Latyshev, O. Ovchinnikov, E. Popova","doi":"10.17308/kcmf.2019.21/1147","DOIUrl":null,"url":null,"abstract":"The effect of photon processing (FO) on the formation of a heterojunction in the TiO2/QD’sCdS interface obtained by applying separately synthesized CdS quantum dots to the TiO2 film in the rutile phase has been studied. The changes of luminescence spectra and absorption of the investigated samples after this treatment discovered. It is shown that the separation of charge carriers occurs only after irradiation of samples with a powerful light pulse of a xenon lamp. \n  \nREFERENCES \n \nKapilashrami M., Zhang Y. , Liu Y.-S., Hagfeldt A., Guo J. Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Ener gy Applications. Chem. Rev., 2014, v. 114, pp. 9662–9707.  https://doi.org/10.1021/cr5000893 \nDang T. C., Pham D. L., Le H. C., Pham V. H. TiO2/CdS nanocomposite fi lms: fabrication, characterization, electronic and optical properties. Adv. Nat. Sci. Nanosci. Nanotechnol., 2010, v. 1, p. 015002. https://doi.org/10.1088/2043-6254/1/1/015002 \nQian X., Qin D., Bai Y., Li T., Tang X., Wang E., Dong S., Photosensitization of TiO2 nanoparticulate thin fi lm electrodes by CdS nanoparticles. J. Solid State Electrochem., 2001, v. 5, pp. 562–567. https://doi.org/10.1007/s100080000179 \nBaker D. R., Kamat P. V. Photosensitization of TiO2 nanostructures with CdS quantum dots: Particulateversus tubular support architectures. Adv. Funct. Mater., 2009, v. 19, pp. 805–811. https://doi.org/10.1002/adfm.200801173 \nCheng S., Fu W., Yang H., Zhang L., Ma J., Zhao H., Sun M., Yang L. Photoelectrochemical performance of multiple semiconductors (CdS/CdSe/ZnS) cosensitized TiO2 photoelectrodes. J. Phys. Chem. C, 2012, v. 116, pp. 2615–2621. https://doi.org/10.1021/jp209258r \nKhlyap H. Physics and technology of semiconductor thin fi lm-based active elements and devices. Bentham Science Publisher, 2012. https://doi.org/10.2174/97816080502151090101 \nMilnes A. G., Feucht D. L. Hetero junctions and metal-semiconductor junctions. Academic Press, 418 p. https://doi.org/10.1016/B978-0-12-498050-1.X5001-6 \nIevlev V. M., Latyshev A. N., Kovneristyi Y. K., Turaeva T. L., Vavilova V. V., Ovchinnikov O. V., Selivanov V. N., Serbin O. V. Mechanism of the photonic activation of solid-phase processes. High Energy Chem., 2005, v. 39, pp. 397–402. https://doi.org/10.1007/s10733-005-0078-2 \nIevlev V. M., Kushchev S. B., Latyshev A. N., Ovchinnikov O. V., Leonova L. Y, Solntsev K. A., Soldatenko S. A., Smirnov M. S., Sinelnikov A. A., Vozgorkov A. M., Ivikova M. A. Relation of absorption band edge of rutile fi lms and their structure. Inorg. Mater. Appl. Res., 2014, v. 5, pp. 14–21. https://doi.org/10.1134/s2075113314010055 \nKorolev N. V., Smirnov M. S., Ovchinnikov O. V, Shatskikh T.S. Energy structure and absorption spectra of colloidal CdS nanocrystals in gelatin matrix. Phys. E Low-Dimensional Syst. Nanostructures, 2015, v. 68, pp. 159–163. https://doi.org/10.1016/j.physe.2014.10.042. \nGhazzal M. N., Wojcieszak R., Raj G., Gaigneaux E.M. Study of mesoporous cds-quantumdot-sensitized TiO2 fi lms by using x-ray photoelectron spectroscopy and afm. Beilstein J. Nanotechnol, 2014, v. 5, pp. 68–76. https://doi.org/10.3762/bjnano.5.6 \nAhire R. R., Sagade A. A., Deshpande N. G., Chavhan S. D., Sharma R., Singh F. Engineering of nanocrystalline cadmium sulfi de thin fi lms by using swift heavy ions. J. Phys. D. Appl. Phys., 2007, v. 40, pp. 4850–4854. https://doi.org/10.1088/0022-3727/40/16/014 \nEkimov A., Onushchenko A.A. Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett., 1984, v. 40, pp. 1136–1139. \nRolo A. G., Stepikhova M. V., Filonovich S. A., Ricolleau C., Vasilevskiy M. I., Gomes M. J. M. Microstructure and photoluminescence of CdS-doped silica fi lms grown by RF magnetron sputtering. Phys. Status Solidi Basic Res., 2002, v. 232, pp. 44–49. https://doi.org/10.1002/1521-3951(200207)232:1<44::AIDPSSB44> 3.0.CO;2-4 \nSmyntyna V., Skobeeva V., Malushin N. The nature of emission centers in CdS nanocrystals, Radiat. Meas., 2007, v. 42, pp. 693–696. https://doi.org/10.1016/j.radmeas.2007.01.068 \nEhemba A. K., Socé M. M., Domingo J. J., Cisse S., Dieng M. Optimization of the properties of the back surface fi eld of a Cu (In, Ga) Se2 thin fi lm solar cell. American Journal of Energy Research, 2017, v. 5(2), pp. 57–62. https://doi.org/10.12691/ajer-5-2-5 \n \n ","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2019.21/1147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of photon processing (FO) on the formation of a heterojunction in the TiO2/QD’sCdS interface obtained by applying separately synthesized CdS quantum dots to the TiO2 film in the rutile phase has been studied. The changes of luminescence spectra and absorption of the investigated samples after this treatment discovered. It is shown that the separation of charge carriers occurs only after irradiation of samples with a powerful light pulse of a xenon lamp.   REFERENCES Kapilashrami M., Zhang Y. , Liu Y.-S., Hagfeldt A., Guo J. Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Ener gy Applications. Chem. Rev., 2014, v. 114, pp. 9662–9707.  https://doi.org/10.1021/cr5000893 Dang T. C., Pham D. L., Le H. C., Pham V. H. TiO2/CdS nanocomposite fi lms: fabrication, characterization, electronic and optical properties. Adv. Nat. Sci. Nanosci. Nanotechnol., 2010, v. 1, p. 015002. https://doi.org/10.1088/2043-6254/1/1/015002 Qian X., Qin D., Bai Y., Li T., Tang X., Wang E., Dong S., Photosensitization of TiO2 nanoparticulate thin fi lm electrodes by CdS nanoparticles. J. Solid State Electrochem., 2001, v. 5, pp. 562–567. https://doi.org/10.1007/s100080000179 Baker D. R., Kamat P. V. Photosensitization of TiO2 nanostructures with CdS quantum dots: Particulateversus tubular support architectures. Adv. Funct. Mater., 2009, v. 19, pp. 805–811. https://doi.org/10.1002/adfm.200801173 Cheng S., Fu W., Yang H., Zhang L., Ma J., Zhao H., Sun M., Yang L. Photoelectrochemical performance of multiple semiconductors (CdS/CdSe/ZnS) cosensitized TiO2 photoelectrodes. J. Phys. Chem. C, 2012, v. 116, pp. 2615–2621. https://doi.org/10.1021/jp209258r Khlyap H. Physics and technology of semiconductor thin fi lm-based active elements and devices. Bentham Science Publisher, 2012. https://doi.org/10.2174/97816080502151090101 Milnes A. G., Feucht D. L. Hetero junctions and metal-semiconductor junctions. Academic Press, 418 p. https://doi.org/10.1016/B978-0-12-498050-1.X5001-6 Ievlev V. M., Latyshev A. N., Kovneristyi Y. K., Turaeva T. L., Vavilova V. V., Ovchinnikov O. V., Selivanov V. N., Serbin O. V. Mechanism of the photonic activation of solid-phase processes. High Energy Chem., 2005, v. 39, pp. 397–402. https://doi.org/10.1007/s10733-005-0078-2 Ievlev V. M., Kushchev S. B., Latyshev A. N., Ovchinnikov O. V., Leonova L. Y, Solntsev K. A., Soldatenko S. A., Smirnov M. S., Sinelnikov A. A., Vozgorkov A. M., Ivikova M. A. Relation of absorption band edge of rutile fi lms and their structure. Inorg. Mater. Appl. Res., 2014, v. 5, pp. 14–21. https://doi.org/10.1134/s2075113314010055 Korolev N. V., Smirnov M. S., Ovchinnikov O. V, Shatskikh T.S. Energy structure and absorption spectra of colloidal CdS nanocrystals in gelatin matrix. Phys. E Low-Dimensional Syst. Nanostructures, 2015, v. 68, pp. 159–163. https://doi.org/10.1016/j.physe.2014.10.042. Ghazzal M. N., Wojcieszak R., Raj G., Gaigneaux E.M. Study of mesoporous cds-quantumdot-sensitized TiO2 fi lms by using x-ray photoelectron spectroscopy and afm. Beilstein J. Nanotechnol, 2014, v. 5, pp. 68–76. https://doi.org/10.3762/bjnano.5.6 Ahire R. R., Sagade A. A., Deshpande N. G., Chavhan S. D., Sharma R., Singh F. Engineering of nanocrystalline cadmium sulfi de thin fi lms by using swift heavy ions. J. Phys. D. Appl. Phys., 2007, v. 40, pp. 4850–4854. https://doi.org/10.1088/0022-3727/40/16/014 Ekimov A., Onushchenko A.A. Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett., 1984, v. 40, pp. 1136–1139. Rolo A. G., Stepikhova M. V., Filonovich S. A., Ricolleau C., Vasilevskiy M. I., Gomes M. J. M. Microstructure and photoluminescence of CdS-doped silica fi lms grown by RF magnetron sputtering. Phys. Status Solidi Basic Res., 2002, v. 232, pp. 44–49. https://doi.org/10.1002/1521-3951(200207)232:1<44::AIDPSSB44> 3.0.CO;2-4 Smyntyna V., Skobeeva V., Malushin N. The nature of emission centers in CdS nanocrystals, Radiat. Meas., 2007, v. 42, pp. 693–696. https://doi.org/10.1016/j.radmeas.2007.01.068 Ehemba A. K., Socé M. M., Domingo J. J., Cisse S., Dieng M. Optimization of the properties of the back surface fi eld of a Cu (In, Ga) Se2 thin fi lm solar cell. American Journal of Energy Research, 2017, v. 5(2), pp. 57–62. https://doi.org/10.12691/ajer-5-2-5  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用发光和吸收光谱控制CDS量子点敏化纳米金红石薄膜异质结的形成
在金红石相TiO2薄膜上分别应用合成的CdS量子点,研究了光子处理(FO)对TiO2/QD’scds界面形成异质结的影响。发现了处理后样品的发光光谱和吸收的变化。结果表明,只有在氙灯强光脉冲照射样品后,载流子才会发生分离。卡皮拉什米,张勇,刘玉生。郭军,郭军。TiO2纳米材料的光学性质和电子结构研究。化学。Rev., 2014, v. 114, pp. 9662-9707。https://doi.org/10.1021/cr5000893邓天成,范德良,李洪成,范维华。TiO2/CdS纳米复合薄膜的制备、表征及电子光学性能。自然科学博士Nanosci。Nanotechnol。科学通报,2010,vol . 1, p. 015002。https://doi.org/10.1088/2043-6254/1/1/015002钱鑫,秦丹,白燕,李涛,唐鑫,王娥,董生,纳米CdS纳米TiO2薄膜电极的光敏化研究。J.固态电化学。, 2001,第5期,第562-567页。https://doi.org/10.1007/s100080000179 Baker D. R., Kamat P. V. TiO2纳米结构与CdS量子点的光敏化:微粒与管状支撑结构。放置功能。板牙。, 2009, v. 19, pp. 805-811。https://doi.org/10.1002/adfm.200801173程生,付伟,杨辉,张磊,马军,赵慧,孙敏,杨磊。多半导体(CdS/CdSe/ZnS)共敏TiO2光电极的光电性能。期刊。化学。中国科学,2012,vol . 116, pp. 2615-2621。https://doi.org/10.1021/jp209258r Khlyap H.半导体薄膜有源元件与器件的物理与技术。边沁科学出版社,2012。https://doi.org/10.2174/97816080502151090101 Milnes A. G. Feucht D. L.异质结与金属半导体结。学术出版社,418 p. https://doi.org/10.1016/B978-0-12-498050-1.X5001-6 Ievlev V. M., Latyshev A. N., Kovneristyi Y. K., Turaeva T. L., Vavilova V. V., Ovchinnikov O. V., Selivanov V. N., Serbin O. V.。高能化学。, 2005, vol . 39, pp. 397-402。https://doi.org/10.1007/s10733-005-0078-2 Ievlev V. M, Kushchev S. B, Latyshev A. N, Ovchinnikov O. V, Leonova L. Y, Solntsev K. A, Soldatenko S. A, Smirnov M. S, Sinelnikov A. A, Vozgorkov A. M, Ivikova M. A.金红石薄膜吸收带边缘与结构的关系。Inorg。板牙。达成。Res., 2014, v. 5, pp. 14-21。https://doi.org/10.1134/s2075113314010055 Korolev N. V, Smirnov M. S, Ovchinnikov O. V, Shatskikh t .S。明胶基质中胶体CdS纳米晶体的能量结构和吸收光谱。理论物理。E低维系统。纳米结构,2015,v. 68, pp. 159-163。https://doi.org/10.1016/j.physe.2014.10.042。王晓东,王晓东,王晓东,等。介孔cds-量子点敏化TiO2薄膜的x射线光电子能谱研究。张建军,张建军,张建军,等。纳米技术,2014,vol . 5, pp. 68-76。https://doi.org/10.3762/bjnano.5.6张建军,张建军,张建军,张建军,张建军。纳米硫化镉薄膜的制备工艺研究。期刊。d:。理论物理。, 2007, vol . 40, pp. 4850-4854。https://doi.org/10.1088/0022-3727/40/16/014 Ekimov A., Onushchenko A.A.微观半导体晶体中电子能谱的尺寸量子化。学报》。, 1984,第40卷,第1136-1139页。罗洛A. G., Stepikhova M. V., Filonovich S. A., Ricolleau C., Vasilevskiy M. I., Gomes M. J. .射频磁控溅射制备掺杂cds的二氧化硅薄膜的微观结构和光致发光。理论物理。《固体地位基本编》,2002年第232节,第44-49页。[2]王晓明,王晓明,王晓明,等。纳米晶体中cd发射中心的性质研究。电子学报,https://doi.org/10.1002/1521-3951(200207)232:1 3.0.CO;量。, 2007, vol . 42, pp. 693-696。https://doi.org/10.1016/j.radmeas.2007.01.068 Ehemba a . K., socesom . M., Domingo J. J., Cisse S., Dieng M. Cu (In, Ga) Se2薄膜太阳能电池的后表面场性能优化。能源学报,2017,vol . 5(2), pp. 57-62。https://doi.org/10.12691/ajer-5-2-5
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dps protein localization studies in nanostructured silicon matrix by scanning electron microscopy Phase formation in the Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system High-temperature spectrophotometry of indium chloride vapours as a method of study of the In – Se system Electrodialysis of a sodium sulphate solution with experimental bentonite-modified bipolar membranes Synthesis of chitosan and N-vinylimidazole graft-copolymers and the properties of their aqueous solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1