Modeling effects of alloying elements and heat treatment parameters on mechanical properties of hot die steel with back-propagation artificial neural network

IF 3.1 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Iron and Steel Research(International) Pub Date : 2017-12-01 DOI:10.1016/S1006-706X(18)30025-6
Yong Liu , Jing-chuan Zhu , Yong Cao
{"title":"Modeling effects of alloying elements and heat treatment parameters on mechanical properties of hot die steel with back-propagation artificial neural network","authors":"Yong Liu ,&nbsp;Jing-chuan Zhu ,&nbsp;Yong Cao","doi":"10.1016/S1006-706X(18)30025-6","DOIUrl":null,"url":null,"abstract":"<div><p>Materials data deep-excavation is very important in materials genome exploration. In order to carry out materials data deep-excavation in hot die steels and obtain the relationships among alloying elements, heat treatment parameters and materials properties, a 11 × 12 × 12 × 4 back-propagation (BP) artificial neural network (ANN) was set up. Alloying element contents, quenching and tempering temperatures were selected as input; hardness, tensile and yield strength were set as output parameters. The ANN shows a high fitting precision. The effects of alloying elements and heat treatment parameters on the properties of hot die steel were studied using this model. The results indicate that high temperature hardness increases with increasing alloying element content of C, Si, Mo, W, Ni, V and Cr to a maximum value and decreases with further increase in alloying element content. The ANN also predicts that the high temperature hardness will decrease with increasing quenching temperature, and possess an optimal value with increasing tempering temperature. This model provides a new tool for novel hot die steel design.</p></div>","PeriodicalId":64470,"journal":{"name":"Journal of Iron and Steel Research(International)","volume":"24 12","pages":"Pages 1254-1260"},"PeriodicalIF":3.1000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1006-706X(18)30025-6","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research(International)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1006706X18300256","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 16

Abstract

Materials data deep-excavation is very important in materials genome exploration. In order to carry out materials data deep-excavation in hot die steels and obtain the relationships among alloying elements, heat treatment parameters and materials properties, a 11 × 12 × 12 × 4 back-propagation (BP) artificial neural network (ANN) was set up. Alloying element contents, quenching and tempering temperatures were selected as input; hardness, tensile and yield strength were set as output parameters. The ANN shows a high fitting precision. The effects of alloying elements and heat treatment parameters on the properties of hot die steel were studied using this model. The results indicate that high temperature hardness increases with increasing alloying element content of C, Si, Mo, W, Ni, V and Cr to a maximum value and decreases with further increase in alloying element content. The ANN also predicts that the high temperature hardness will decrease with increasing quenching temperature, and possess an optimal value with increasing tempering temperature. This model provides a new tool for novel hot die steel design.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用反向传播人工神经网络模拟合金元素和热处理参数对热模具钢力学性能的影响
材料数据深度挖掘是材料基因组探索的重要内容。为了对热模型钢材料数据进行深度挖掘,获得合金元素、热处理参数与材料性能之间的关系,建立了一个11 × 12 × 12 × 4反向传播(BP)人工神经网络(ANN)。输入合金元素含量、淬火回火温度;输出参数为硬度、抗拉强度和屈服强度。人工神经网络具有较高的拟合精度。利用该模型研究了合金元素和热处理参数对热模具钢性能的影响。结果表明:高温硬度随C、Si、Mo、W、Ni、V、Cr合金元素含量的增加而增大,达到最大值,随合金元素含量的增加而减小;人工神经网络还预测,高温硬度随淬火温度的升高而降低,随回火温度的升高而达到最优值。该模型为新型热模具钢的设计提供了新的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
2879
审稿时长
3.0 months
期刊最新文献
Influence of laser re-melting and vacuum heat treatment on plasma-sprayed FeCoCrNiAl alloy coatings Modeling deformation resistance for hot rolling based on generalized additive model Effect of solution pH, Cl− concentration and temperature on electrochemical behavior of PH13-8Mo steel in acidic environments Effects of iron compounds on pyrolysis behavior of coals and metallurgical properties of resultant cokes Effect of heat input on microstructure and mechanical properties of dissimilar joints of AISI 316L steel and API X70 high-strength low-alloy steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1