Impact of Energy Consumption Optimisation on the Electrical Self-Sufficiency of a Microgrid with Vehicle-to-Grid Technology

Vojtech Blazek, L. Prokop, S. Mišák, Pavel Kedroň, Ivo Pergl
{"title":"Impact of Energy Consumption Optimisation on the Electrical Self-Sufficiency of a Microgrid with Vehicle-to-Grid Technology","authors":"Vojtech Blazek, L. Prokop, S. Mišák, Pavel Kedroň, Ivo Pergl","doi":"10.1109/ECTIDAMTNCON57770.2023.10139540","DOIUrl":null,"url":null,"abstract":"This article presents optimisation tools for optimising electric consumption in household microgrid environments with Vehicle To Grid (V2G) technology. Optimalisation tools are based on a Non-dominated sorting genetic algorithm II (NSGA-2). Furthermore, this article describes the digitalised digital twin of the physical microgrid. The physical microgrid simulates a typical Czech household whose primary stochastic energy source is a photovoltaic plant (PV). Microgrid works off-grid. The study's results showed a positive impact on optimising potential electrical self-sufficiency in the microgrid in the conditions of Central Europe. The optimization results most efficiently under tariff mode with electric vehicles (EV). The worst results are achieved in the microgrid, where optimisation is disabled, but tariff mode is activated. This article has served as an initial study of whether it Is worthwhile to use this optimisation.","PeriodicalId":38808,"journal":{"name":"Transactions on Electrical Engineering, Electronics, and Communications","volume":"30 1","pages":"279-283"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Electrical Engineering, Electronics, and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTIDAMTNCON57770.2023.10139540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents optimisation tools for optimising electric consumption in household microgrid environments with Vehicle To Grid (V2G) technology. Optimalisation tools are based on a Non-dominated sorting genetic algorithm II (NSGA-2). Furthermore, this article describes the digitalised digital twin of the physical microgrid. The physical microgrid simulates a typical Czech household whose primary stochastic energy source is a photovoltaic plant (PV). Microgrid works off-grid. The study's results showed a positive impact on optimising potential electrical self-sufficiency in the microgrid in the conditions of Central Europe. The optimization results most efficiently under tariff mode with electric vehicles (EV). The worst results are achieved in the microgrid, where optimisation is disabled, but tariff mode is activated. This article has served as an initial study of whether it Is worthwhile to use this optimisation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
能源消耗优化对车辆到电网技术微电网电力自给的影响
本文介绍了利用车辆到电网(V2G)技术优化家庭微电网环境中电力消耗的优化工具。优化工具基于非支配排序遗传算法II (NSGA-2)。此外,本文还描述了物理微电网的数字化数字孪生。物理微电网模拟了一个典型的捷克家庭,其主要随机能源是光伏电站(PV)。微电网在离网运行。该研究结果显示,在中欧条件下,对优化微电网的潜在电力自给自足具有积极影响。以电动汽车为代表的电价模式下优化效果最好。最糟糕的结果是在微电网中实现的,其中优化被禁用,但关税模式被激活。本文是关于是否值得使用这种优化的初步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transactions on Electrical Engineering, Electronics, and Communications
Transactions on Electrical Engineering, Electronics, and Communications Engineering-Electrical and Electronic Engineering
CiteScore
1.60
自引率
0.00%
发文量
45
期刊最新文献
Improving Air Quality Prediction with a Hybrid Bi-LSTM and GAN Model Sentiment Analysis on Large-Scale Covid-19 Tweets using Hybrid Convolutional LSTM Based on Naïve Bayes Sentiment Modeling Collaborative Movie Recommendation System using Enhanced Fuzzy C-Means Clustering with Dove Swarm Optimization Algorithm A Performance of AFIRO among Asynchronous Iteration Strategy Metaheuristic Algorithms Particle Swarm Optimization Trained Feedforward Neural Network for Under-Voltage Load Shedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1