Numerical experiments with real data for estimating greenhouse gas fluxes in a region

M. Platonova, E. Klimova
{"title":"Numerical experiments with real data for estimating greenhouse gas fluxes in a region","authors":"M. Platonova, E. Klimova","doi":"10.33764/2618-981x-2022-4-132-137","DOIUrl":null,"url":null,"abstract":"This work is devoted to the problem of obtaining an estimate of methane emissions using satellite data and the results of mathematical modeling. To implement the algorithm, a variant of the local Kalman ensemble filter (LETKF) is used, which represents an optimal estimate of the desired parameter based on observational data and a forecast based on a metematic model in a given time interval. This algorithm has properties that allow it to be used locally, i.e., to assimilate data by subdomains. The paper presents the implementation of the algorithm for real observational data and the results of mathematical modeling (calculation of the forecast of the state of the system). The results of the three-dimensional model of transport and diffusion (MOZART-4) are taken as the results of mathematical modeling, and satellite observations (AIRS data) are used as observational data. As a result of the algorithm, an average estimate of methane fluxes in the subdomain was obtained at specified time intervals.","PeriodicalId":13672,"journal":{"name":"Interexpo GEO-Siberia","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interexpo GEO-Siberia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33764/2618-981x-2022-4-132-137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work is devoted to the problem of obtaining an estimate of methane emissions using satellite data and the results of mathematical modeling. To implement the algorithm, a variant of the local Kalman ensemble filter (LETKF) is used, which represents an optimal estimate of the desired parameter based on observational data and a forecast based on a metematic model in a given time interval. This algorithm has properties that allow it to be used locally, i.e., to assimilate data by subdomains. The paper presents the implementation of the algorithm for real observational data and the results of mathematical modeling (calculation of the forecast of the state of the system). The results of the three-dimensional model of transport and diffusion (MOZART-4) are taken as the results of mathematical modeling, and satellite observations (AIRS data) are used as observational data. As a result of the algorithm, an average estimate of methane fluxes in the subdomain was obtained at specified time intervals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用实际数据估算区域温室气体通量的数值实验
这项工作致力于利用卫星数据和数学建模的结果来估计甲烷排放量的问题。为了实现该算法,使用了局部卡尔曼集合滤波器(LETKF)的一种变体,它代表了基于观测数据的期望参数的最优估计和基于给定时间间隔的气象模式的预测。该算法具有允许局部使用的属性,即按子域吸收数据。文中给出了该算法对实际观测数据的实现和数学建模的结果(系统状态预测的计算)。采用三维输运扩散模型(MOZART-4)的结果作为数学建模结果,卫星观测(AIRS数据)作为观测资料。结果表明,该算法可以在指定的时间间隔内得到子域中甲烷通量的平均估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Обоснование интервала-коллектора в разрезах баженовской свиты в центральной части Мансийской синеклизы (Западная Сибирь) Сравнение современных способов автоматизации процессов цифрового картографирования Typical vibration isolation systems and shock absorbers in on-board electronic equipment designs On one inverse dynamic problem of poroelasticity for a layered medium Siberia in journalism, memoirs and letters of exiled social-democrats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1