A landmark-model based system for mining frequent patterns from uncertain data streams

C. Leung, Fan Jiang, Y. Hayduk
{"title":"A landmark-model based system for mining frequent patterns from uncertain data streams","authors":"C. Leung, Fan Jiang, Y. Hayduk","doi":"10.1145/2076623.2076659","DOIUrl":null,"url":null,"abstract":"Huge volumes of streaming data have been generated by sensors for applications such as environment surveillance. Partially due to the inherited limitation of sensors, these continuous streaming data can be uncertain. Over the past few years, algorithms have been proposed to apply the sliding window or time-fading window model to mine frequent patterns from streams of uncertain data. However, there are also other models to process data streams. In this paper, we propose a landmark-model based system for mining frequent patterns from streams of uncertain data.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"81 1","pages":"249-250"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2076623.2076659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Huge volumes of streaming data have been generated by sensors for applications such as environment surveillance. Partially due to the inherited limitation of sensors, these continuous streaming data can be uncertain. Over the past few years, algorithms have been proposed to apply the sliding window or time-fading window model to mine frequent patterns from streams of uncertain data. However, there are also other models to process data streams. In this paper, we propose a landmark-model based system for mining frequent patterns from streams of uncertain data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于里程碑模型的不确定数据流频繁模式挖掘系统
环境监测等应用的传感器产生了大量的流数据。部分由于传感器的固有限制,这些连续流数据可能是不确定的。在过去的几年中,已经提出了应用滑动窗口或时间衰落窗口模型从不确定数据流中挖掘频繁模式的算法。然而,也有其他模型来处理数据流。在本文中,我们提出了一个基于里程碑模型的系统,用于从不确定数据流中挖掘频繁模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method combining improved Mahalanobis distance and adversarial autoencoder to detect abnormal network traffic Proceedings of the International Database Engineered Applications Symposium Conference, IDEAS 2023, Heraklion, Crete, Greece, May 5-7, 2023 IDEAS'22: International Database Engineered Applications Symposium, Budapest, Hungary, August 22 - 24, 2022 IDEAS 2021: 25th International Database Engineering & Applications Symposium, Montreal, QC, Canada, July 14-16, 2021 IDEAS 2020: 24th International Database Engineering & Applications Symposium, Seoul, Republic of Korea, August 12-14, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1