Simulation of Electron Transmittance and Tunneling Current in a Metal-Oxide- Semiconductor Capacitor with a High-K Dielectric Stack of HfO2 and SiO2 Using Exponential- and Airy-Wavefunction Approaches and a Transfer Matrix Method

K. Khairurrijal, F. A. Noor, M. Abdullah, S. Sukirno
{"title":"Simulation of Electron Transmittance and Tunneling Current in a Metal-Oxide- Semiconductor Capacitor with a High-K Dielectric Stack of HfO2 and SiO2 Using Exponential- and Airy-Wavefunction Approaches and a Transfer Matrix Method","authors":"K. Khairurrijal, F. A. Noor, M. Abdullah, S. Sukirno","doi":"10.5614/itb.ijp.2009.20.2.2","DOIUrl":null,"url":null,"abstract":"Analytical expressions of electron transmittance and tunneling current in a metal-oxide-semiconductor (MOS) capacitor with a high dielectric constant (high-K) oxide stack of HfO2 and SiO2 and a negative bias applied to the metal gate were derived. Exponential- and Airy-wavefunction approaches were employed in deriving analytically the electron transmittance and tunneling current. A numerical approach based on a transfer matrix method was used as a standard to evaluate the analytical approaches. It was found that the transmittances obtained under the exponential- and Airy-wavefunction approaches and the TMM are matching for low electron energies, while for higher energies only the transmittances calculated by employing the Airy- wavefunction approach is the same as those computed by using the TMM. It was also found that the tunneling currents calculated by using the exponential- and the Airy-wavefunction approaches and the TMM are equal for low oxide voltages (lower than 0.5 V), while for higher oxide voltages only the tunneling currents computed under the Airy-wavefunction approach fit those obtained under the TMM. Therefore, the Airy-wavefunction approach provides a better analytical model to tunneling processes in the MOS capacitor.","PeriodicalId":13535,"journal":{"name":"Indonesian Journal of Physics","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itb.ijp.2009.20.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analytical expressions of electron transmittance and tunneling current in a metal-oxide-semiconductor (MOS) capacitor with a high dielectric constant (high-K) oxide stack of HfO2 and SiO2 and a negative bias applied to the metal gate were derived. Exponential- and Airy-wavefunction approaches were employed in deriving analytically the electron transmittance and tunneling current. A numerical approach based on a transfer matrix method was used as a standard to evaluate the analytical approaches. It was found that the transmittances obtained under the exponential- and Airy-wavefunction approaches and the TMM are matching for low electron energies, while for higher energies only the transmittances calculated by employing the Airy- wavefunction approach is the same as those computed by using the TMM. It was also found that the tunneling currents calculated by using the exponential- and the Airy-wavefunction approaches and the TMM are equal for low oxide voltages (lower than 0.5 V), while for higher oxide voltages only the tunneling currents computed under the Airy-wavefunction approach fit those obtained under the TMM. Therefore, the Airy-wavefunction approach provides a better analytical model to tunneling processes in the MOS capacitor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用指数波函数法、airy波函数法和传递矩阵法模拟高k介电堆叠HfO2和SiO2金属氧化物半导体电容器中的电子透过率和隧道电流
导出了在高介电常数(高k)的HfO2和SiO2氧化物堆和负偏压作用于金属栅极的金属氧化物半导体(MOS)电容器中电子透过率和隧道电流的解析表达式。采用指数波函数法和airy波函数法解析推导了电子透过率和隧穿电流。采用基于传递矩阵法的数值方法作为评价分析方法的标准。结果表明,在电子能量较低时,指数波函数法和Airy波函数法计算的透射率与TMM相匹配,而在电子能量较高时,只有采用Airy波函数法计算的透射率与采用TMM计算的透射率相同。在低氧化物电压下(低于0.5 V),用指数波函数法和airy波函数法计算的隧道电流与TMM法计算的隧道电流相等,而在高氧化物电压下,只有用airy波函数法计算的隧道电流与TMM法计算的隧道电流相符。因此,airy波函数方法为MOS电容的隧穿过程提供了较好的分析模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Magnetoteluric Modelling in High Noise of Low Frequency Signal Density Functional Theory Simulation of Iron-Montmorillonite as Carbon Dioxide Adsorber Analysis of the Effect of Tube Current, Slice Thickness, and Tube Voltage on Ct Scan Image Noise using the Noise Power Spectrum (NPS) Method Determination of Fractionation Scheme Based on Repair Effect Using Equivalent Uniform Dose (EUD) Model Investigation of hydraulic jump by using the Moving Particle Semi-Implicit method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1