{"title":"Polynomial Time PAC Learnability of a Sub-class of Linear Languages","authors":"Y. Tajima, Y. Kotani, M. Terada","doi":"10.2197/IPSJDC.1.643","DOIUrl":null,"url":null,"abstract":"We propose some PAC like settings for a learning problem of a sub-class of linear languages, and show its polynomial time learnability in each of our settings. Here, the sub-class of linear languages is newly defined, and it includes the class of regular languages and the class of even linear languages. We show a polynomial time learning algorithm in either of the following settings with a fixed but unknown probability distribution for examples.(1) The first case is when the learner can use randomly drawn examples, membership queries, and a set of representative samples.(2) The second case is when the learner can use randomly drawn examples, membership queries, and both of the size of a grammar which can generate the target language and d. Where d is the probability such that the rarest rule in the target grammar occurs in the derivation of a randomly drawn example. In each case, for the target language Lt, the hypothesis Lhsatisfies thatPr[P(Lh Δ Lt) ≤ e] ≥ 1 - δ for the error parameter 0 < e ≤ 1 and the confidential parameter 0 < δ ≤ 1.","PeriodicalId":93135,"journal":{"name":"PDPTA '19 : proceedings of the 2019 International Conference on Parallel & Distributed Processing Techniquess & Applications. International Conference on Parallel and Distributed Processing Techniques and Applications (2019 : Las Vegas,...","volume":"1 1","pages":"338-344"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PDPTA '19 : proceedings of the 2019 International Conference on Parallel & Distributed Processing Techniquess & Applications. International Conference on Parallel and Distributed Processing Techniques and Applications (2019 : Las Vegas,...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJDC.1.643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose some PAC like settings for a learning problem of a sub-class of linear languages, and show its polynomial time learnability in each of our settings. Here, the sub-class of linear languages is newly defined, and it includes the class of regular languages and the class of even linear languages. We show a polynomial time learning algorithm in either of the following settings with a fixed but unknown probability distribution for examples.(1) The first case is when the learner can use randomly drawn examples, membership queries, and a set of representative samples.(2) The second case is when the learner can use randomly drawn examples, membership queries, and both of the size of a grammar which can generate the target language and d. Where d is the probability such that the rarest rule in the target grammar occurs in the derivation of a randomly drawn example. In each case, for the target language Lt, the hypothesis Lhsatisfies thatPr[P(Lh Δ Lt) ≤ e] ≥ 1 - δ for the error parameter 0 < e ≤ 1 and the confidential parameter 0 < δ ≤ 1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性语言子类的多项式时间可学习性
对于线性语言的一个子类的学习问题,我们提出了一些类似PAC的设置,并在每个设置中展示了它的多项式时间可学习性。这里新定义了线性语言的子类,它包括正则语言类和偶线性语言类。我们展示了一种多项式时间学习算法,在以下任意一种情况下,样本的概率分布是固定但未知的:(1)第一种情况是学习者可以使用随机抽取的样本、隶属度查询和一组有代表性的样本。可以生成目标语言的语法的大小和d。其中d是在随机抽取的示例的推导中出现目标语法中最稀有规则的概率。在每种情况下,对于目标语言Lt,假设Lh满足pr [P(Lh Δ Lt)≤e]≥1 - Δ,误差参数0 < e≤1,保密参数0 < Δ≤1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancement of Neural Networks Novelty Filters with Genetic Algorithms Time-Technology High-Performance Host-Device Scheduling and Data-Transfer Minimization Techniques for Visualization of 3D Agent-Based Wound Healing Applications. A Comparative Xeon and CBE Performance Analysis A Tuple Space Web Service for Distributed Programming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1