A New Heating Control Method for Effective Hyperthermia Treatment of a Brain Tumor Using the Resonant Cavity Applicator with a Segmented Dielectric Bolus

Y. Iseki, Hideaki Takahashi, T. Uzuka, Kazuo Kato
{"title":"A New Heating Control Method for Effective Hyperthermia Treatment of a Brain Tumor Using the Resonant Cavity Applicator with a Segmented Dielectric Bolus","authors":"Y. Iseki, Hideaki Takahashi, T. Uzuka, Kazuo Kato","doi":"10.3191/THERMALMED.30.41","DOIUrl":null,"url":null,"abstract":"This paper describes a new heating control method of the proposed resonant cavity applicator for non-invasive brain tumor hyperthermia treatments. In the previous study, the resonant cavity applicator for treating brain tumors was proposed. In the present study,a dielectric bolus was used to control the heated location inside brain tumors. The dielectric bolus was divided into four sections filled with dielectric materials,such as water,and was attached to the human head inside the cavity. By changing the dielectric materials inside each section,the heated location could be controlled inside brain tumors. In this paper,first,the method for controlling the heated location with the dielectric bolus was presented. Second,two types of numerical models to calculate temperature distributions were described. First,we used a cylindrical phantom model for the basic study to check the ability of the proposed method. Second,we used a 3-D anatomical human head model which was reconstructed from 2-D medical images by using the 3-D computer aided design (CAD) software. Finally, the temperature profiles calculated by the 3-D finite element method (FEM) and heating experiments heated by the developed heating system were discussed. From the results of computer simulations and heating experiment with the agar phantom,it was confirmed that the results of the computer simulations were in close agreement with the results of the heating experiments with an error of 10% or less. Next,we calculated the temperature distribution of the 3-D anatomical human head model that takes into account the cooling effect of blood flow. The proposed heating method covered approximately 97% of the brain tumor size without an undesirable hotspot. From these results,it was found that the proposed heating control method is useful for effective hyperthermia treatments.","PeriodicalId":23299,"journal":{"name":"Thermal Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3191/THERMALMED.30.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes a new heating control method of the proposed resonant cavity applicator for non-invasive brain tumor hyperthermia treatments. In the previous study, the resonant cavity applicator for treating brain tumors was proposed. In the present study,a dielectric bolus was used to control the heated location inside brain tumors. The dielectric bolus was divided into four sections filled with dielectric materials,such as water,and was attached to the human head inside the cavity. By changing the dielectric materials inside each section,the heated location could be controlled inside brain tumors. In this paper,first,the method for controlling the heated location with the dielectric bolus was presented. Second,two types of numerical models to calculate temperature distributions were described. First,we used a cylindrical phantom model for the basic study to check the ability of the proposed method. Second,we used a 3-D anatomical human head model which was reconstructed from 2-D medical images by using the 3-D computer aided design (CAD) software. Finally, the temperature profiles calculated by the 3-D finite element method (FEM) and heating experiments heated by the developed heating system were discussed. From the results of computer simulations and heating experiment with the agar phantom,it was confirmed that the results of the computer simulations were in close agreement with the results of the heating experiments with an error of 10% or less. Next,we calculated the temperature distribution of the 3-D anatomical human head model that takes into account the cooling effect of blood flow. The proposed heating method covered approximately 97% of the brain tumor size without an undesirable hotspot. From these results,it was found that the proposed heating control method is useful for effective hyperthermia treatments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分段电介质丸谐振腔加药器对脑肿瘤有效热疗的加热控制新方法
本文介绍了一种用于脑肿瘤非侵入性热疗的谐振腔应用器的加热控制方法。在以往的研究中,提出了一种用于脑肿瘤治疗的谐振腔应用器。在本研究中,使用电介质丸来控制脑肿瘤内的加热位置。电介质丸被分成四个部分,其中充满了电介质材料,例如水,并被附着在腔内的人的头部上。通过改变每个部分内部的介电材料,可以控制脑肿瘤内部的加热位置。本文首先提出了用介质丸控制加热位置的方法。其次,介绍了两种计算温度分布的数值模式。首先,我们使用圆柱体模型进行基础研究,以检验所提出方法的能力。其次,利用三维计算机辅助设计(CAD)软件从二维医学图像重建三维人体头部解剖模型。最后,讨论了三维有限元法计算的温度分布和所开发的加热系统的加热实验。计算机模拟和琼脂模体加热实验结果表明,计算机模拟结果与加热实验结果吻合较好,误差不超过10%。接下来,我们计算了考虑血流冷却效应的三维人体头部解剖模型的温度分布。所提出的加热方法覆盖了大约97%的脑肿瘤大小,没有不良热点。从这些结果中发现,所提出的加热控制方法可用于有效的热疗治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
前立腺肥大症による中等度から重度の下部尿路症状に対する水蒸気温熱治療の多施設ランダム化偽対照比較試験の最終5年間の結果 低温プラズマおよびハイパーサーミア併用効果を用いたがん治療の可能性 Discovery of Mammalian HSP40 and Subsequent Progress 温度と光を感知し相分離する色素タンパク質フィトクロムB Engineering of Probiotic Bacteria System for the Temperature-sensitive Production of Immune Checkpoint Blockade Nanobodies by Intratumor Heating with Focused Ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1