How Does Heat Propagate in Liquids?

IF 1.2 4区 化学 Q4 CHEMISTRY, PHYSICAL Physics and Chemistry of Liquids Pub Date : 2023-01-30 DOI:10.3390/liquids3010009
F. Peluso
{"title":"How Does Heat Propagate in Liquids?","authors":"F. Peluso","doi":"10.3390/liquids3010009","DOIUrl":null,"url":null,"abstract":"In this paper, we proceed to illustrate the consequences and implications of the Dual Model of Liquids (DML) by applying it to the heat propagation. Within the frame of the DML, propagation of thermal (elastic) energy in liquids is due to wave-packet propagation and to the wave-packets’ interaction with the material particles of the liquid, meant in the DML as aggregates of molecules swimming in an ocean of amorphous liquid. The liquid particles interact with the lattice particles, a population of elastic wave-packets, by means of an inertial force, exchanging energy and momentum with them. The hit particle relaxes at the end of the interaction, releasing the energy and momentum back to the system a step forward and a time lapse later, like in a tunnel effect. The tunnel effect and the duality of liquids are the new elements that suggest on a physical basis for the first time, using a hyperbolic equation to describe the propagation of energy associated to the dynamics of wave-packet interaction with liquid particles. Although quantitatively relevant only in the transient phase, the additional term characterizing the hyperbolic equation, usually named the “memory term”, is physically present also once the stationary state is attained; it is responsible for dissipation in liquids and provides a finite propagation velocity for wave-packet avalanches responsible in the DML for the heat conduction. The consequences of this physical interpretation of the “memory” term added to the Fourier law for the phononic contribution are discussed and compiled with numerical prediction for the value of the memory term and with the conclusions of other works on the same topic.","PeriodicalId":20094,"journal":{"name":"Physics and Chemistry of Liquids","volume":"19 4 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Liquids","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/liquids3010009","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we proceed to illustrate the consequences and implications of the Dual Model of Liquids (DML) by applying it to the heat propagation. Within the frame of the DML, propagation of thermal (elastic) energy in liquids is due to wave-packet propagation and to the wave-packets’ interaction with the material particles of the liquid, meant in the DML as aggregates of molecules swimming in an ocean of amorphous liquid. The liquid particles interact with the lattice particles, a population of elastic wave-packets, by means of an inertial force, exchanging energy and momentum with them. The hit particle relaxes at the end of the interaction, releasing the energy and momentum back to the system a step forward and a time lapse later, like in a tunnel effect. The tunnel effect and the duality of liquids are the new elements that suggest on a physical basis for the first time, using a hyperbolic equation to describe the propagation of energy associated to the dynamics of wave-packet interaction with liquid particles. Although quantitatively relevant only in the transient phase, the additional term characterizing the hyperbolic equation, usually named the “memory term”, is physically present also once the stationary state is attained; it is responsible for dissipation in liquids and provides a finite propagation velocity for wave-packet avalanches responsible in the DML for the heat conduction. The consequences of this physical interpretation of the “memory” term added to the Fourier law for the phononic contribution are discussed and compiled with numerical prediction for the value of the memory term and with the conclusions of other works on the same topic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热如何在液体中传播?
在本文中,我们继续说明的后果和意义的双重模型的液体(DML)应用它的热传播。在DML的框架内,热(弹性)能在液体中的传播是由于波包传播和波包与液体物质粒子的相互作用,在DML中,这意味着在无定形液体海洋中游动的分子聚集。液体粒子通过惯性力与晶格粒子(一群弹性波包)相互作用,与它们交换能量和动量。被击中的粒子在相互作用结束时放松,向前一步释放能量和动量,然后再向前一步释放时间,就像在隧道效应中一样。隧道效应和液体的对偶性是第一次在物理基础上提出的新元素,使用双曲方程来描述与波包与液体粒子相互作用动力学相关的能量传播。虽然仅在瞬态阶段与定量相关,但表征双曲方程的附加项(通常称为“记忆项”)在达到稳态后也在物理上存在;它负责液体中的耗散,并为DML中负责热传导的波包雪崩提供有限的传播速度。对傅立叶定律中为声子贡献而增加的“记忆”项的这种物理解释的结果进行了讨论,并与对记忆项值的数值预测以及关于同一主题的其他工作的结论一起进行了汇编。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics and Chemistry of Liquids
Physics and Chemistry of Liquids 化学-物理:凝聚态物理
CiteScore
3.30
自引率
8.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Physics and Chemistry of Liquids publishes experimental and theoretical papers, letters and reviews aimed at furthering the understanding of the liquid state. The coverage embraces the whole spectrum of liquids, from simple monatomic liquids and their mixtures, through charged liquids (e.g. ionic melts, liquid metals and their alloys, ions in aqueous solution, and metal-electrolyte systems) to molecular liquids of all kinds. It also covers quantum fluids and superfluids, such as Fermi and non-Fermi liquids, superconductors, Bose-Einstein condensates, correlated electron or spin assemblies. By publishing papers on physical aspects of the liquid state as well as those with a mainly chemical focus, Physics and Chemistry of Liquids provides a medium for the publication of interdisciplinary papers on liquids serving its broad international readership of physicists and chemists.
期刊最新文献
Solubility of sildenafil citrate in acetonitrile + water mixture at different temperatures Abraham solvation parameter model: experiment-based solute descriptors for (2-nitrophenyl)acetic acid Dielectric characterisation and intermolecular interactions in propionitrile-dimethyl sulphoxide mixtures using a time domain reflectometry Volumetric properties of CO2-loaded and unloaded 3-amino-1- propanol/1-amino-2-propanol/3-dimethylamino-1-propanol + N, N-dimethylacetamide binary mixture at (288.15 to 323.15) K and 101 kPa Solubility of glibenclamide in carbitol and 1-propanol mixtures at different temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1