Load Value Approximation

Joshua San Miguel, Mario Badr, Natalie D. Enright Jerger
{"title":"Load Value Approximation","authors":"Joshua San Miguel, Mario Badr, Natalie D. Enright Jerger","doi":"10.1109/MICRO.2014.22","DOIUrl":null,"url":null,"abstract":"Approximate computing explores opportunities that emerge when applications can tolerate error or inexactness. These applications, which range from multimedia processing to machine learning, operate on inherently noisy and imprecise data. We can trade-off some loss in output value integrity for improved processor performance and energy-efficiency. As memory accesses consume substantial latency and energy, we explore load value approximation, a micro architectural technique to learn value patterns and generate approximations for the data. The processor uses these approximate data values to continue executing without incurring the high cost of accessing memory, removing load instructions from the critical path. Load value approximation can also inhibit approximated loads from accessing memory, resulting in energy savings. On a range of PARSEC workloads, we observe up to 28.6% speedup (8.5% on average) and 44.1% energy savings (12.6% on average), while maintaining low output error. By exploiting the approximate nature of applications, we draw closer to the ideal latency and energy of accessing memory.","PeriodicalId":6591,"journal":{"name":"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture","volume":"61 1","pages":"127-139"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICRO.2014.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

Abstract

Approximate computing explores opportunities that emerge when applications can tolerate error or inexactness. These applications, which range from multimedia processing to machine learning, operate on inherently noisy and imprecise data. We can trade-off some loss in output value integrity for improved processor performance and energy-efficiency. As memory accesses consume substantial latency and energy, we explore load value approximation, a micro architectural technique to learn value patterns and generate approximations for the data. The processor uses these approximate data values to continue executing without incurring the high cost of accessing memory, removing load instructions from the critical path. Load value approximation can also inhibit approximated loads from accessing memory, resulting in energy savings. On a range of PARSEC workloads, we observe up to 28.6% speedup (8.5% on average) and 44.1% energy savings (12.6% on average), while maintaining low output error. By exploiting the approximate nature of applications, we draw closer to the ideal latency and energy of accessing memory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
负荷值近似
近似计算探索了当应用程序可以容忍错误或不精确时出现的机会。这些应用范围从多媒体处理到机器学习,都是在固有的嘈杂和不精确的数据上运行的。我们可以权衡输出值完整性的一些损失,以提高处理器性能和能源效率。由于内存访问消耗大量的延迟和能量,我们探索负载值近似,这是一种学习值模式并生成数据近似的微架构技术。处理器使用这些近似的数据值继续执行,而不会产生访问内存的高成本,也不会从关键路径中删除加载指令。负载值近似还可以抑制近似负载访问内存,从而节省能源。在一系列PARSEC工作负载上,我们观察到高达28.6%的加速(平均为8.5%)和44.1%的节能(平均为12.6%),同时保持低输出误差。通过利用应用程序的近似性质,我们更接近于访问内存的理想延迟和能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Specializing Compiler Optimizations through Programmable Composition for Dense Matrix Computations Efficient Memory Virtualization: Reducing Dimensionality of Nested Page Walks SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers Equalizer: Dynamic Tuning of GPU Resources for Efficient Execution Harnessing Soft Computations for Low-Budget Fault Tolerance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1