{"title":"Vibration Suppression of an Elastically Supported Beam With Closely Spaced Natural Frequencies","authors":"Haizhou Liu, Hao Gao","doi":"10.1115/IMECE2020-23671","DOIUrl":null,"url":null,"abstract":"\n Vibration suppression of distributed parameter systems is of great interest and has a wide range of applications. The dynamic performance of a primary system can be improved by adding dynamic vibration absorbers (DVA). Although the relevant topics have been studied for decades, the trade-off between capability of suppressing multiple resonant peaks and complexity of absorbers has not been well addressed. In this paper, the vibration suppression problem of a uniform Euler-Bernoulli beam with closely spaced natural frequencies is investigated. To achieve desired vibration reduction, a two-DOF DVA is connected to the beam through a pair of a spring and a dashpot. By introducing a virtual ground spring, the parameters of the absorber are determined via extended fixed point theory. The proposed method only requires univariate optimization and is computationally efficient. Numerical examples conducted verify the viability of the proposed method and the effectiveness of a two-DOF DVA in suppressing double resonances.","PeriodicalId":23585,"journal":{"name":"Volume 7A: Dynamics, Vibration, and Control","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7A: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-23671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Vibration suppression of distributed parameter systems is of great interest and has a wide range of applications. The dynamic performance of a primary system can be improved by adding dynamic vibration absorbers (DVA). Although the relevant topics have been studied for decades, the trade-off between capability of suppressing multiple resonant peaks and complexity of absorbers has not been well addressed. In this paper, the vibration suppression problem of a uniform Euler-Bernoulli beam with closely spaced natural frequencies is investigated. To achieve desired vibration reduction, a two-DOF DVA is connected to the beam through a pair of a spring and a dashpot. By introducing a virtual ground spring, the parameters of the absorber are determined via extended fixed point theory. The proposed method only requires univariate optimization and is computationally efficient. Numerical examples conducted verify the viability of the proposed method and the effectiveness of a two-DOF DVA in suppressing double resonances.