Vibration Suppression of an Elastically Supported Beam With Closely Spaced Natural Frequencies

Haizhou Liu, Hao Gao
{"title":"Vibration Suppression of an Elastically Supported Beam With Closely Spaced Natural Frequencies","authors":"Haizhou Liu, Hao Gao","doi":"10.1115/IMECE2020-23671","DOIUrl":null,"url":null,"abstract":"\n Vibration suppression of distributed parameter systems is of great interest and has a wide range of applications. The dynamic performance of a primary system can be improved by adding dynamic vibration absorbers (DVA). Although the relevant topics have been studied for decades, the trade-off between capability of suppressing multiple resonant peaks and complexity of absorbers has not been well addressed. In this paper, the vibration suppression problem of a uniform Euler-Bernoulli beam with closely spaced natural frequencies is investigated. To achieve desired vibration reduction, a two-DOF DVA is connected to the beam through a pair of a spring and a dashpot. By introducing a virtual ground spring, the parameters of the absorber are determined via extended fixed point theory. The proposed method only requires univariate optimization and is computationally efficient. Numerical examples conducted verify the viability of the proposed method and the effectiveness of a two-DOF DVA in suppressing double resonances.","PeriodicalId":23585,"journal":{"name":"Volume 7A: Dynamics, Vibration, and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7A: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-23671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vibration suppression of distributed parameter systems is of great interest and has a wide range of applications. The dynamic performance of a primary system can be improved by adding dynamic vibration absorbers (DVA). Although the relevant topics have been studied for decades, the trade-off between capability of suppressing multiple resonant peaks and complexity of absorbers has not been well addressed. In this paper, the vibration suppression problem of a uniform Euler-Bernoulli beam with closely spaced natural frequencies is investigated. To achieve desired vibration reduction, a two-DOF DVA is connected to the beam through a pair of a spring and a dashpot. By introducing a virtual ground spring, the parameters of the absorber are determined via extended fixed point theory. The proposed method only requires univariate optimization and is computationally efficient. Numerical examples conducted verify the viability of the proposed method and the effectiveness of a two-DOF DVA in suppressing double resonances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有紧密固有频率的弹性支承梁的振动抑制
分布参数系统的振动抑制具有广泛的应用前景。通过添加动态吸振器(DVA)可以改善一次系统的动态性能。虽然相关课题已经研究了几十年,但在抑制多共振峰的能力和吸收器的复杂性之间的权衡还没有得到很好的解决。本文研究了具有紧密固有频率间隔的均匀欧拉-伯努利梁的振动抑制问题。为了达到预期的减振效果,两自由度DVA通过一对弹簧和阻尼器连接到梁上。通过引入虚拟地弹簧,利用扩展不动点理论确定了吸波器的参数。该方法只需要单变量优化,计算效率高。数值算例验证了该方法的可行性和双自由度DVA抑制双共振的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-in-the-Loop Simulation for Large-Scale Applications Multi-Degree-of-Freedom Modeling for Electric Powertrains: Inertia Effect of Engine Mounting System On Structural Damping Characteristics in the Electro-Mechanical Impedance Method A Framework for Spatial 3D Collision Models: Theory and Validation Deep Neural Network Real-Time Control of a Motorized Functional Electrical Stimulation Cycle With an Uncertain Time-Varying Electromechanical Delay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1