{"title":"High-content fructooligosaccharides production using two immobilized microorganisms in an internal-loop airlift bioreactor","authors":"T.-J. Lin, Y.-C. Lee","doi":"10.1016/j.jcice.2008.01.006","DOIUrl":null,"url":null,"abstract":"<div><p>Production of high-content fructooligosaccharides (FOSs) from sucrose using calcium alginate-immobilized mycelia of <em>Aspergillus japonicus</em> and <em>Aspergillus niger</em> in an internal-loop airlift bioreactor was investigated. The optimal entrapment of mycelia in <em>A. japonicus</em> and <em>A. niger</em> in calcium alginate were 1% and 7% (w/w), respectively. When 60<!--> <!-->g of the immobilized mycelia of <em>A. japonicus</em> was supplied into the reactor filling with 3-L 300<!--> <!-->g/L sucrose solution and gas velocity 7.32<!--> <!-->cm/s, the total FOS production was about 55% (w/w) of total sugars in the mixture after a batch reaction for 9<!--> <!-->h. To remove the generated glucose, an inhibitor of β-<span>d</span>-fructofuranosidase, the optimal input of the second immobilized <em>A. niger</em> mycelia particles was 315<!--> <!-->g. With this input, the total FOSs mass fraction reached up to 90% (w/w) and the initial rate of transfructosylation was increased almost twice as without supplying glucose oxidase. In addition, 5.49<!--> <!-->cm/s was suggested as the operating gas velocity for considering sufficient oxygen supply for glucose oxidase without generating excessive shear stress to damage the immobilized particles.</p></div>","PeriodicalId":17285,"journal":{"name":"Journal of The Chinese Institute of Chemical Engineers","volume":"39 3","pages":"Pages 211-217"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcice.2008.01.006","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Institute of Chemical Engineers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368165308000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Production of high-content fructooligosaccharides (FOSs) from sucrose using calcium alginate-immobilized mycelia of Aspergillus japonicus and Aspergillus niger in an internal-loop airlift bioreactor was investigated. The optimal entrapment of mycelia in A. japonicus and A. niger in calcium alginate were 1% and 7% (w/w), respectively. When 60 g of the immobilized mycelia of A. japonicus was supplied into the reactor filling with 3-L 300 g/L sucrose solution and gas velocity 7.32 cm/s, the total FOS production was about 55% (w/w) of total sugars in the mixture after a batch reaction for 9 h. To remove the generated glucose, an inhibitor of β-d-fructofuranosidase, the optimal input of the second immobilized A. niger mycelia particles was 315 g. With this input, the total FOSs mass fraction reached up to 90% (w/w) and the initial rate of transfructosylation was increased almost twice as without supplying glucose oxidase. In addition, 5.49 cm/s was suggested as the operating gas velocity for considering sufficient oxygen supply for glucose oxidase without generating excessive shear stress to damage the immobilized particles.