Machine Learning-based EEG Signal Classification of Parkinson’s Disease

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Cloud Computing-Advances Systems and Applications Pub Date : 2023-07-01 DOI:10.1109/CSCloud-EdgeCom58631.2023.00078
Hao Wu, Jun Qi, Yong Yue
{"title":"Machine Learning-based EEG Signal Classification of Parkinson’s Disease","authors":"Hao Wu, Jun Qi, Yong Yue","doi":"10.1109/CSCloud-EdgeCom58631.2023.00078","DOIUrl":null,"url":null,"abstract":"As the second most common neurodegenerative disease in the world, Parkinson’s disease continues to affect the normal and healthy life of patients. In recent years, considerable progress has been made in studying the EEG of patients with Parkinson’s disease. Many EEG data of patients with Parkinson’s disease can be published, and more filtering algorithms and classification models suitable for EEG signals of Parkinson’s disease have been proposed. However, studying channel redundancy of EEG signals in Parkinson’s disease still faces challenges. The pathogenesis of Parkinson’s disease is still uncertain in medicine, and it is difficult to propose a channel selection scheme suitable for all patients with Parkinson’s disease. In this paper, the open UNM data set is used to extract multi-scale features based on the fourth-order Butterworth IIR filter and Wavelet Packet Transform. The channel selection is carried out by using single-channel verification. 12 and 25 channels with the relative best R2 scores were selected for the feature data set generated based on these two methods. The classification performance of data sets with and without channel selection was compared between the open and closed-eye data sets. The negative effect of open eye status on EEG classification of Parkinson’s disease was found, and the channel selection was used to improve the AUC by 1% in the same data set. Results showed that the proposed channel selection scheme can alleviate the overfitting phenomenon that occurred in the training set in the testing set while maintaining the classification accuracy.","PeriodicalId":56007,"journal":{"name":"Journal of Cloud Computing-Advances Systems and Applications","volume":"3 1","pages":"423-428"},"PeriodicalIF":3.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing-Advances Systems and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCloud-EdgeCom58631.2023.00078","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As the second most common neurodegenerative disease in the world, Parkinson’s disease continues to affect the normal and healthy life of patients. In recent years, considerable progress has been made in studying the EEG of patients with Parkinson’s disease. Many EEG data of patients with Parkinson’s disease can be published, and more filtering algorithms and classification models suitable for EEG signals of Parkinson’s disease have been proposed. However, studying channel redundancy of EEG signals in Parkinson’s disease still faces challenges. The pathogenesis of Parkinson’s disease is still uncertain in medicine, and it is difficult to propose a channel selection scheme suitable for all patients with Parkinson’s disease. In this paper, the open UNM data set is used to extract multi-scale features based on the fourth-order Butterworth IIR filter and Wavelet Packet Transform. The channel selection is carried out by using single-channel verification. 12 and 25 channels with the relative best R2 scores were selected for the feature data set generated based on these two methods. The classification performance of data sets with and without channel selection was compared between the open and closed-eye data sets. The negative effect of open eye status on EEG classification of Parkinson’s disease was found, and the channel selection was used to improve the AUC by 1% in the same data set. Results showed that the proposed channel selection scheme can alleviate the overfitting phenomenon that occurred in the training set in the testing set while maintaining the classification accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的帕金森病脑电信号分类
帕金森病是世界上第二大常见的神经退行性疾病,一直影响着患者的正常健康生活。近年来,对帕金森病患者脑电图的研究取得了相当大的进展。大量帕金森病患者的脑电图数据得以发表,并提出了更多适合帕金森病患者脑电图信号的滤波算法和分类模型。然而,研究帕金森病脑电信号的通道冗余仍然面临挑战。帕金森病的发病机制在医学上仍不确定,难以提出适合所有帕金森病患者的通道选择方案。本文利用开放的UNM数据集,基于四阶Butterworth IIR滤波和小波包变换提取多尺度特征。通过单通道验证进行通道选择。根据这两种方法生成的特征数据集,分别选择R2得分相对最好的12和25个通道。比较了开眼和闭眼数据集在有通道选择和没有通道选择情况下的分类性能。发现睁眼状态对帕金森病EEG分类的负面影响,在相同的数据集中,采用通道选择将AUC提高1%。结果表明,所提出的通道选择方案在保持分类精度的同时,可以缓解训练集在测试集中出现的过拟合现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cloud Computing-Advances Systems and Applications
Journal of Cloud Computing-Advances Systems and Applications Computer Science-Computer Networks and Communications
CiteScore
6.80
自引率
7.50%
发文量
76
审稿时长
75 days
期刊介绍: The Journal of Cloud Computing: Advances, Systems and Applications (JoCCASA) will publish research articles on all aspects of Cloud Computing. Principally, articles will address topics that are core to Cloud Computing, focusing on the Cloud applications, the Cloud systems, and the advances that will lead to the Clouds of the future. Comprehensive review and survey articles that offer up new insights, and lay the foundations for further exploratory and experimental work, are also relevant.
期刊最新文献
Research on electromagnetic vibration energy harvester for cloud-edge-end collaborative architecture in power grid FedEem: a fairness-based asynchronous federated learning mechanism Adaptive device sampling and deadline determination for cloud-based heterogeneous federated learning Review on the application of cloud computing in the sports industry Improving cloud storage and privacy security for digital twin based medical records
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1