{"title":"Shape recognition by using Scale Invariant Feature Transform for contour","authors":"Mathara Rojanamontien, U. Watchareeruetai","doi":"10.1109/JCSSE.2017.8025910","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel shape feature extractor named Contour-SIFT along with a matching method that computes the similarity between two set of proposed descriptors. It allows a shape to be recognized based on automatically located outstanding local features on its contour, which are extracted from 1-D signal representations of different smoothing scales. The algorithm describes each local feature as a list of frequencies from curvature histogram, which is created from curve segment around each local position. The descriptors will give high similarity compared with a model descriptors of a similar shape. The algorithm has properties of image scaling-, translation-, and rotation-invariants. An experiment were conducted with 200 images from Flavia dataset for verification. The result of using the proposed algorithm is compared with the result of using CSS.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"107 2 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2017.8025910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper proposes a novel shape feature extractor named Contour-SIFT along with a matching method that computes the similarity between two set of proposed descriptors. It allows a shape to be recognized based on automatically located outstanding local features on its contour, which are extracted from 1-D signal representations of different smoothing scales. The algorithm describes each local feature as a list of frequencies from curvature histogram, which is created from curve segment around each local position. The descriptors will give high similarity compared with a model descriptors of a similar shape. The algorithm has properties of image scaling-, translation-, and rotation-invariants. An experiment were conducted with 200 images from Flavia dataset for verification. The result of using the proposed algorithm is compared with the result of using CSS.