SIREN: A Simulation Framework for Understanding the Effects of Recommender Systems in Online News Environments

D. Bountouridis, Jaron Harambam, M. Makhortykh, M. Marrero, N. Tintarev, C. Hauff
{"title":"SIREN: A Simulation Framework for Understanding the Effects of Recommender Systems in Online News Environments","authors":"D. Bountouridis, Jaron Harambam, M. Makhortykh, M. Marrero, N. Tintarev, C. Hauff","doi":"10.1145/3287560.3287583","DOIUrl":null,"url":null,"abstract":"The growing volume of digital data stimulates the adoption of recommender systems in different socioeconomic domains, including news industries. While news recommenders help consumers deal with information overload and increase their engagement, their use also raises an increasing number of societal concerns, such as \"Matthew effects\", \"filter bubbles\", and the overall lack of transparency. We argue that focusing on transparency for content-providers is an under-explored avenue. As such, we designed a simulation framework called SIREN1 (SImulating Recommender Effects in online News environments), that allows content providers to (i) select and parameterize different recommenders and (ii) analyze and visualize their effects with respect to two diversity metrics. Taking the U.S. news media as a case study, we present an analysis on the recommender effects with respect to long-tail novelty and unexpectedness using SIREN. Our analysis offers a number of interesting findings, such as the similar potential of certain algorithmically simple (item-based k-Nearest Neighbour) and sophisticated strategies (based on Bayesian Personalized Ranking) to increase diversity over time. Overall, we argue that simulating the effects of recommender systems can help content providers to make more informed decisions when choosing algorithmic recommenders, and as such can help mitigate the aforementioned societal concerns.","PeriodicalId":20573,"journal":{"name":"Proceedings of the Conference on Fairness, Accountability, and Transparency","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Fairness, Accountability, and Transparency","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3287560.3287583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

The growing volume of digital data stimulates the adoption of recommender systems in different socioeconomic domains, including news industries. While news recommenders help consumers deal with information overload and increase their engagement, their use also raises an increasing number of societal concerns, such as "Matthew effects", "filter bubbles", and the overall lack of transparency. We argue that focusing on transparency for content-providers is an under-explored avenue. As such, we designed a simulation framework called SIREN1 (SImulating Recommender Effects in online News environments), that allows content providers to (i) select and parameterize different recommenders and (ii) analyze and visualize their effects with respect to two diversity metrics. Taking the U.S. news media as a case study, we present an analysis on the recommender effects with respect to long-tail novelty and unexpectedness using SIREN. Our analysis offers a number of interesting findings, such as the similar potential of certain algorithmically simple (item-based k-Nearest Neighbour) and sophisticated strategies (based on Bayesian Personalized Ranking) to increase diversity over time. Overall, we argue that simulating the effects of recommender systems can help content providers to make more informed decisions when choosing algorithmic recommenders, and as such can help mitigate the aforementioned societal concerns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIREN:用于理解在线新闻环境中推荐系统影响的模拟框架
不断增长的数字数据量刺激了不同社会经济领域(包括新闻行业)对推荐系统的采用。新闻推荐在帮助消费者处理信息过载、提高参与度的同时,也引发了越来越多的社会担忧,比如“马太效应”、“过滤泡沫”,以及整体缺乏透明度。我们认为,关注内容提供商的透明度是一个尚未得到充分探索的途径。因此,我们设计了一个名为SIREN1(模拟在线新闻环境中的推荐效果)的模拟框架,它允许内容提供商(i)选择和参数化不同的推荐者,(ii)根据两个多样性指标分析和可视化他们的效果。本文以美国新闻媒体为例,利用SIREN分析了长尾新颖性和意外性方面的推荐效应。我们的分析提供了许多有趣的发现,例如某些简单算法(基于物品的k近邻)和复杂策略(基于贝叶斯个性化排名)在增加多样性方面具有相似的潜力。总的来说,我们认为模拟推荐系统的效果可以帮助内容提供商在选择算法推荐时做出更明智的决定,因此可以帮助减轻上述社会问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithmic Transparency from the South: Examining the state of algorithmic transparency in Chile's public administration algorithms FAccT '21: 2021 ACM Conference on Fairness, Accountability, and Transparency, Virtual Event / Toronto, Canada, March 3-10, 2021 Transparency universal Resisting transparency Conclusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1