Dual Spatial Pyramid On Rotation Invariant Texture Feature For HEp-2 Cell Classification

Xiang Xu, F. Lin, Carol Ng, K. Leong
{"title":"Dual Spatial Pyramid On Rotation Invariant Texture Feature For HEp-2 Cell Classification","authors":"Xiang Xu, F. Lin, Carol Ng, K. Leong","doi":"10.1109/IJCNN.2015.7280372","DOIUrl":null,"url":null,"abstract":"Indirect Immunofluorescence (IIF) on Human Epithelial-2 (HEp-2) cells is the hallmark method for detecting some specific autoimmune diseases by identifying the presence of antinuclear antibodies (ANAs) within a patient's serum. Due to the limitations of IIF, such as being subjective and time consuming, automated Computer-aided diagnosis (CAD) system is required for diagnostic purposes. In this paper, we propose a novel feature extraction scheme for automatic staining pattern classification of HEp-2 cells. Our method constructs a dual spatial pyramid structure on a powerful rotation invariant texture feature, which has the following advantages: (1) invariance under local rotation of the image, (2) robustness against resolution changes, and (3) strong descriptive ability. Incorporated with a linear SVM classifier, our approach demonstrates its effectiveness by testing on two HEp-2 cells datasets: the ICPR2012 dataset and the ICIP2013 training dataset. Particularly, it shows superior classification performance than the best performer at the first edition of the HEp-2 cell classification contest.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"24 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Indirect Immunofluorescence (IIF) on Human Epithelial-2 (HEp-2) cells is the hallmark method for detecting some specific autoimmune diseases by identifying the presence of antinuclear antibodies (ANAs) within a patient's serum. Due to the limitations of IIF, such as being subjective and time consuming, automated Computer-aided diagnosis (CAD) system is required for diagnostic purposes. In this paper, we propose a novel feature extraction scheme for automatic staining pattern classification of HEp-2 cells. Our method constructs a dual spatial pyramid structure on a powerful rotation invariant texture feature, which has the following advantages: (1) invariance under local rotation of the image, (2) robustness against resolution changes, and (3) strong descriptive ability. Incorporated with a linear SVM classifier, our approach demonstrates its effectiveness by testing on two HEp-2 cells datasets: the ICPR2012 dataset and the ICIP2013 training dataset. Particularly, it shows superior classification performance than the best performer at the first edition of the HEp-2 cell classification contest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于旋转不变性纹理特征的双重空间金字塔HEp-2细胞分类
人上皮-2 (HEp-2)细胞上的间接免疫荧光(IIF)是通过识别患者血清中抗核抗体(ANAs)的存在来检测某些特定自身免疫性疾病的标志性方法。由于IIF的主观性和耗时等局限性,需要自动计算机辅助诊断(CAD)系统来进行诊断。在本文中,我们提出了一种新的HEp-2细胞染色模式自动分类的特征提取方案。该方法基于强大的旋转不变性纹理特征构建双空间金字塔结构,具有以下优点:(1)图像局部旋转下的不变性;(2)对分辨率变化的鲁棒性;(3)描述能力强。结合线性支持向量机分类器,我们的方法通过在两个HEp-2细胞数据集(ICPR2012数据集和ICIP2013训练数据集)上进行测试来证明其有效性。特别是,它比第一届HEp-2细胞分类比赛中表现最好的选手表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1