Analisis Jumlah Pengguna pada Traffic IP-based dengan Multi Criteria Decision Making

Marisa Premitasari
{"title":"Analisis Jumlah Pengguna pada Traffic IP-based dengan Multi Criteria Decision Making","authors":"Marisa Premitasari","doi":"10.26760/MINDJOURNAL.V5I2.92-107","DOIUrl":null,"url":null,"abstract":"AbstrakTrafik telekomunikasi sudah bermigrasi ke IP-based Traffic. Salah satunya adalah Laboratorium TIK (Teknologi Informasi dan Komunikasi) ITENAS yang meng-generate invarian trafik. Pada penelitian ini, penulis melakukan monitoring pasif dan aktif untuk mendapatkan berbagai invarian trafik. Monitoring pasif didapatkan dari software ISP Moratel dan SOPHOS Firewall. Monitoring aktif dilakukan dengan capture data secara live pada waktu jam sibuk. Invarian trafik yang berhasil di-captured adalah incoming traffic, outgoing traffic, speed, volume, date dan downtime. Jam sibuk diambil berdasarkan dugaan sementara  mulai pukul  10.00-16.00.  Invarian ini menjadi input dari sistem untuk dijadikan kriteria dan jam sibuk  dijadikan atribut. Kriteria dan atribut  diolah dengan metoda Multi Criteria Decision Making yaitu SAW (Simple Additive Weighting) dan AHP(Analytical Hierarchy Process). Output dari sistem adalah prediksi jumlah pengguna di jam sibuk dengan skala fuzzy rules. Hasil penelitian menyimpulkan pukul 11.00 AM-12.00 PM adalah jam tersibuk dengan jumlah user terbanyak.Kata kunci: monitoring aktif, monitoring pasif, kriteria, atribut,bobotAbstractTelecommunication traffic has migrated to IP-based traffic .One of the industry is Laboratorium TIK ITENAS  (Teknologi Informasi dan Komunikasi)  which generates traffic  invariant. In this study, the authors conducted passive and active monitoring to obtain various traffic invariance. Passive monitoring were obtained from ISP Moratel software and SOPHOS Firewall. Active monitoring were done by capturing live data during peak hours. Traffic invariance that have been captured consist  incoming traffic, outgoing traffic, speed, volume, date and downtime. Busy hours were taken based on personal estimation start from 10.00-16.00. This invariance became the system’s input  which has been used as criteria and peak hours are used as attributes. Criteria and attributes were processed using the Multi Criteria Decision Making method, namely SAW (Simple Additive Weighting and AHP (Analytical Hierarchy Process). The output of the system is user’s number prediction  with fuzzy scale. The result  concluded that 11.00 AM-12.00 PM is the  busiest hours with the most number of usersKeywords: active monitoring, passive monitoring, criterion, attributes, weight ","PeriodicalId":43900,"journal":{"name":"Time & Mind-The Journal of Archaeology Consciousness and Culture","volume":"7 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time & Mind-The Journal of Archaeology Consciousness and Culture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/MINDJOURNAL.V5I2.92-107","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

AbstrakTrafik telekomunikasi sudah bermigrasi ke IP-based Traffic. Salah satunya adalah Laboratorium TIK (Teknologi Informasi dan Komunikasi) ITENAS yang meng-generate invarian trafik. Pada penelitian ini, penulis melakukan monitoring pasif dan aktif untuk mendapatkan berbagai invarian trafik. Monitoring pasif didapatkan dari software ISP Moratel dan SOPHOS Firewall. Monitoring aktif dilakukan dengan capture data secara live pada waktu jam sibuk. Invarian trafik yang berhasil di-captured adalah incoming traffic, outgoing traffic, speed, volume, date dan downtime. Jam sibuk diambil berdasarkan dugaan sementara  mulai pukul  10.00-16.00.  Invarian ini menjadi input dari sistem untuk dijadikan kriteria dan jam sibuk  dijadikan atribut. Kriteria dan atribut  diolah dengan metoda Multi Criteria Decision Making yaitu SAW (Simple Additive Weighting) dan AHP(Analytical Hierarchy Process). Output dari sistem adalah prediksi jumlah pengguna di jam sibuk dengan skala fuzzy rules. Hasil penelitian menyimpulkan pukul 11.00 AM-12.00 PM adalah jam tersibuk dengan jumlah user terbanyak.Kata kunci: monitoring aktif, monitoring pasif, kriteria, atribut,bobotAbstractTelecommunication traffic has migrated to IP-based traffic .One of the industry is Laboratorium TIK ITENAS  (Teknologi Informasi dan Komunikasi)  which generates traffic  invariant. In this study, the authors conducted passive and active monitoring to obtain various traffic invariance. Passive monitoring were obtained from ISP Moratel software and SOPHOS Firewall. Active monitoring were done by capturing live data during peak hours. Traffic invariance that have been captured consist  incoming traffic, outgoing traffic, speed, volume, date and downtime. Busy hours were taken based on personal estimation start from 10.00-16.00. This invariance became the system’s input  which has been used as criteria and peak hours are used as attributes. Criteria and attributes were processed using the Multi Criteria Decision Making method, namely SAW (Simple Additive Weighting and AHP (Analytical Hierarchy Process). The output of the system is user’s number prediction  with fuzzy scale. The result  concluded that 11.00 AM-12.00 PM is the  busiest hours with the most number of usersKeywords: active monitoring, passive monitoring, criterion, attributes, weight 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ip的登干多准则决策分析
已迁移到ip基交通。其中一个是新兴的ITENAS流动实验室。在这项研究中,作者进行被动和主动监控以获得各种不变体的流量。来自Moratel ISP软件和SOPHOS防火墙的被动监控。在高峰时间进行活动数据捕获监控。成功捕获的不变量是将流量、流量、速度、体积、日期和停机时间重新引入。高峰时间从10点到1600点不等。它的不变体成为系统的输入,以成为标准和繁忙时间的属性。规范和属性与多晶测定法决策方法为锯子(简单的adpleve调整)和AHP(分析程序)。该系统的输出是在繁忙时间用模糊的规则来预测用户的数量。研究结果显示,晚上11点到12点是最繁忙的一小时,用户数量最多。关键词:主动监控器,被动监控器,标准,属性,传讯,传讯已经被分配到信息通信实验室。在这个研究中,当局负责监督不同流量的变化。来自ISP Moratel软件和SOPHOS防火墙的安全监控器已经打开。在高峰时段进行直播监控。已经被认为是交通、交通、速度、音量、日期和停机时间的延误。忙碌的时间从10点到1600点都是基于个人估计的。这一变化使系统的输入变成了平品和峰小时的充电。《百科全书》和《试镜》都是通过多晶片制法namely SAW(简单的adpleve调整和AHP过程)进行的。系统的输出是用户的模型编号最近的结论是晚上11点到12点是最繁忙的时间,有最重要的用户信息:活动监控器,被动监控器,小批评,吸引,重量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
23
期刊最新文献
The Rough Tor Effect: early prehistoric monuments focusing on significant tors in Cornwall Apolline divination: hallucinogenic substances or cognitive inputs? The case of the laurel Performance theory: a growing interest in rock art research Archaeology at the intersection between cognitive neuroscience, performance theory, and architecture: from psychoactive substances to rock art and bone shelters Living inside a mammoth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1