PNPLA-mediated lipid hydrolysis and transacylation – At the intersection of catabolism and anabolism

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular and cell biology of lipids Pub Date : 2023-11-09 DOI:10.1016/j.bbalip.2023.159410
Mariana Colaço-Gaspar , Peter Hofer , Monika Oberer , Rudolf Zechner
{"title":"PNPLA-mediated lipid hydrolysis and transacylation – At the intersection of catabolism and anabolism","authors":"Mariana Colaço-Gaspar ,&nbsp;Peter Hofer ,&nbsp;Monika Oberer ,&nbsp;Rudolf Zechner","doi":"10.1016/j.bbalip.2023.159410","DOIUrl":null,"url":null,"abstract":"<div><p>Patatin-like phospholipase domain containing proteins (PNPLAs) play diverse roles in lipid metabolism. In this review, we focus on the enzymatic properties and predicted 3D structures of PNPLA1-5. PNPLA2-4 exert both catabolic and anabolic functions. Whereas PNPLA1 is predominantly expressed in the epidermis and involved in sphingolipid biosynthesis, PNPLA2 and 4 are ubiquitously expressed and exhibit several enzymatic activities, including hydrolysis and transacylation of various (glycero-)lipid species. This review summarizes known biological roles for PNPLA-mediated hydrolysis and transacylation reactions and highlights open questions concerning their physiological function.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388198123001348/pdfft?md5=5883a92590a14f2d45e8121e7133de8c&pid=1-s2.0-S1388198123001348-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198123001348","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Patatin-like phospholipase domain containing proteins (PNPLAs) play diverse roles in lipid metabolism. In this review, we focus on the enzymatic properties and predicted 3D structures of PNPLA1-5. PNPLA2-4 exert both catabolic and anabolic functions. Whereas PNPLA1 is predominantly expressed in the epidermis and involved in sphingolipid biosynthesis, PNPLA2 and 4 are ubiquitously expressed and exhibit several enzymatic activities, including hydrolysis and transacylation of various (glycero-)lipid species. This review summarizes known biological roles for PNPLA-mediated hydrolysis and transacylation reactions and highlights open questions concerning their physiological function.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pnpla介导的脂质水解和转酰基化-在分解代谢和合成代谢的交叉点。
Patatin-like phospholipase domain containing protein (PNPLAs)在脂质代谢中发挥着多种作用。在这篇综述中,我们重点研究了PNPLA1-5的酶学性质和预测的三维结构,PNPLA2-4同时发挥分解代谢和合成代谢功能。PNPLA1主要表达于表皮并参与鞘脂的生物合成,而PNPLA2和4则普遍表达并表现出多种酶活性,包括水解和转酰基化各种(甘油-)脂类。本文综述了已知的pnpla介导的水解和转酰基化反应的生物学作用,并强调了其生理功能的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
2.10%
发文量
109
审稿时长
53 days
期刊介绍: BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.
期刊最新文献
Eicosanoid biosynthesizing enzymes in Prototheria Lipid imaging mass spectrometry: Towards a new molecular histology Sex-specific response of the human plasma lipidome to short-term cold exposure Dysregulation of lipid metabolism in the liver of Tspo knockout mice Seasonal and genetic effects on lipid profiles of juvenile Atlantic salmon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1