Exploring Flexibility and Folding Patterns Throughout Time in Voltage Sensors.

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Evolution Pub Date : 2023-12-01 Epub Date: 2023-11-13 DOI:10.1007/s00239-023-10140-1
Abigail García-Morales, Daniel Balleza
{"title":"Exploring Flexibility and Folding Patterns Throughout Time in Voltage Sensors.","authors":"Abigail García-Morales, Daniel Balleza","doi":"10.1007/s00239-023-10140-1","DOIUrl":null,"url":null,"abstract":"<p><p>The voltage-sensing domain (VSD) is a module capable of responding to changes in the membrane potential through conformational changes and facilitating electromechanical coupling to open a pore gate, activate proton permeation pathways, or promote enzymatic activity in some membrane-anchored phosphatases. To carry out these functions, this module acts cooperatively through conformational changes. The VSD is formed by four transmembrane segments (S1-S4) but the S4 segment is critical since it carries positively charged residues, mainly Arg or Lys, which require an aqueous environment for its proper function. The discovery of this module in voltage-gated ion channels (VGICs), proton channels (Hv1), and voltage sensor-containing phosphatases (VSPs) has expanded our understanding of the principle of modularity in the voltage-sensing mechanism of these proteins. Here, by sequence comparison and the evaluation of the relationship between sequence composition, intrinsic flexibility, and structural analysis in 14 selected representatives of these three major protein groups, we report five interesting differences in the folding patterns of the VSD both in prokaryotes and eukaryotes. Our main findings indicate that this module is highly conserved throughout the evolutionary scale, however: (1) segments S1 to S3 in eukaryotes are significantly more hydrophobic than those present in prokaryotes; (2) the S4 segment has retained its hydrophilic character; (3) in eukaryotes the extramembranous linkers are significantly larger and more flexible in comparison with those present in prokaryotes; (4) the sensors present in the kHv1 proton channel and the ciVSP phosphatase, both of eukaryotic origin, exhibit relationships of flexibility and folding patterns very close to the typical ones found in prokaryotic voltage sensors; and (5) archaeal channels KvAP and MVP have flexibility profiles which are clearly contrasting in the S3-S4 region, which could explain their divergent activation mechanisms. Finally, to elucidate the obscure origins of this module, we show further evidence for a possible connection between voltage sensors and TolQ proteins.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"819-836"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-023-10140-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The voltage-sensing domain (VSD) is a module capable of responding to changes in the membrane potential through conformational changes and facilitating electromechanical coupling to open a pore gate, activate proton permeation pathways, or promote enzymatic activity in some membrane-anchored phosphatases. To carry out these functions, this module acts cooperatively through conformational changes. The VSD is formed by four transmembrane segments (S1-S4) but the S4 segment is critical since it carries positively charged residues, mainly Arg or Lys, which require an aqueous environment for its proper function. The discovery of this module in voltage-gated ion channels (VGICs), proton channels (Hv1), and voltage sensor-containing phosphatases (VSPs) has expanded our understanding of the principle of modularity in the voltage-sensing mechanism of these proteins. Here, by sequence comparison and the evaluation of the relationship between sequence composition, intrinsic flexibility, and structural analysis in 14 selected representatives of these three major protein groups, we report five interesting differences in the folding patterns of the VSD both in prokaryotes and eukaryotes. Our main findings indicate that this module is highly conserved throughout the evolutionary scale, however: (1) segments S1 to S3 in eukaryotes are significantly more hydrophobic than those present in prokaryotes; (2) the S4 segment has retained its hydrophilic character; (3) in eukaryotes the extramembranous linkers are significantly larger and more flexible in comparison with those present in prokaryotes; (4) the sensors present in the kHv1 proton channel and the ciVSP phosphatase, both of eukaryotic origin, exhibit relationships of flexibility and folding patterns very close to the typical ones found in prokaryotic voltage sensors; and (5) archaeal channels KvAP and MVP have flexibility profiles which are clearly contrasting in the S3-S4 region, which could explain their divergent activation mechanisms. Finally, to elucidate the obscure origins of this module, we show further evidence for a possible connection between voltage sensors and TolQ proteins.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索柔性和折叠模式在整个时间电压传感器。
电压感应域(VSD)是一个能够通过构象变化和促进机电耦合来响应膜电位变化的模块,从而打开孔门,激活质子渗透途径,或促进某些膜锚定磷酸酶的酶活性。为了实现这些功能,该模块通过构象变化协同工作。VSD由四个跨膜片段(S1-S4)组成,但S4片段至关重要,因为它携带带正电的残基,主要是精氨酸或赖氨酸,它们需要水环境才能正常发挥作用。该模块在电压门控离子通道(vgic)、质子通道(Hv1)和含有电压传感器的磷酸酶(VSPs)中的发现,扩大了我们对这些蛋白质的电压感应机制的模块化原理的理解。在这里,通过序列比较以及对这三个主要蛋白质群的14个代表的序列组成、内在灵活性和结构分析之间的关系的评估,我们报告了原核生物和真核生物中VSD折叠模式的五个有趣差异。我们的主要研究结果表明,该模块在整个进化尺度上是高度保守的,然而:(1)真核生物的S1至S3段明显比原核生物的疏水性更强;(2) S4段仍保持亲水性;(3)与原核生物相比,真核生物的膜外连接物明显更大、更灵活;(4)存在于kHv1质子通道和ciVSP磷酸酶中的传感器,都是真核起源,其柔韧性和折叠模式与原核电压传感器的典型关系非常接近;(5)古细菌通道KvAP和MVP在S3-S4区域具有明显的灵活性,这可以解释它们不同的激活机制。最后,为了阐明该模块的模糊起源,我们展示了电压传感器和TolQ蛋白之间可能连接的进一步证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
期刊最新文献
Selection Pressure Regulates the Evolution-Structure-Function Paradigm of Monocyte Chemoattractant Protein Family. 2024 Zuckerkandl Prize. nT4X and nT4M: Novel Time Non-reversible Mixture Amino Acid Substitution Models. Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms. Common Ancestry of the Id Locus: Chromosomal Rearrangement and Polygenic Possibilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1