Developments of inverse analysis by Kalman filters and Bayesian methods applied to geotechnical engineering.

IF 4.4 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the Japan Academy. Series B, Physical and Biological Sciences Pub Date : 2023-01-01 DOI:10.2183/pjab.99.023
Akira Murakami, Kazunori Fujisawa, Takayuki Shuku
{"title":"Developments of inverse analysis by Kalman filters and Bayesian methods applied to geotechnical engineering.","authors":"Akira Murakami, Kazunori Fujisawa, Takayuki Shuku","doi":"10.2183/pjab.99.023","DOIUrl":null,"url":null,"abstract":"<p><p>The present paper reviews recent activities on inverse analysis strategies in geotechnical engineering using Kalman filters, nonlinear Kalman filters, and Markov chain Monte Carlo (MCMC)/Hamiltonian Monte Carlo (HMC) methods. Nonlinear Kalman filters with finite element method (FEM) broaden the choices of unknowns to be determined for not only parameters but also initial and/or boundary conditions, and the use of the posterior probability of the state variables can be widely applied to, for example, the decision making for design changes. The relevance of the unknowns and the observed values and the selection of the best sensor locations are some of the considerations made while using the Kalman filter FEM. This paper demonstrates several real-world geotechnical applications of the nonlinear Kalman filter and the MCMC with FEM. Future studies should focus on the following areas: attaining excellent performance for long-term forecasts using short-term observation and developing a viable method for selecting equations that describe physical phenomena and constitutive models.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"99 9","pages":"352-388"},"PeriodicalIF":4.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10749391/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.2183/pjab.99.023","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper reviews recent activities on inverse analysis strategies in geotechnical engineering using Kalman filters, nonlinear Kalman filters, and Markov chain Monte Carlo (MCMC)/Hamiltonian Monte Carlo (HMC) methods. Nonlinear Kalman filters with finite element method (FEM) broaden the choices of unknowns to be determined for not only parameters but also initial and/or boundary conditions, and the use of the posterior probability of the state variables can be widely applied to, for example, the decision making for design changes. The relevance of the unknowns and the observed values and the selection of the best sensor locations are some of the considerations made while using the Kalman filter FEM. This paper demonstrates several real-world geotechnical applications of the nonlinear Kalman filter and the MCMC with FEM. Future studies should focus on the following areas: attaining excellent performance for long-term forecasts using short-term observation and developing a viable method for selecting equations that describe physical phenomena and constitutive models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卡尔曼滤波和贝叶斯反分析方法在岩土工程中的应用进展。
本文综述了近年来应用卡尔曼滤波器、非线性卡尔曼滤波器和马尔可夫链蒙特卡罗(MCMC)/哈密顿蒙特卡罗(HMC)方法在岩土工程反演分析策略方面的研究进展。非线性卡尔曼滤波与有限元方法(FEM)拓宽了未知数的选择,不仅是参数,而且初始和/或边界条件,并使用状态变量的后验概率可以广泛应用于,例如,设计变更的决策。在使用卡尔曼滤波有限元法时,未知量与观测值的相关性以及最佳传感器位置的选择是一些需要考虑的问题。本文介绍了非线性卡尔曼滤波和MCMC与FEM在实际工程中的应用。未来的研究应集中在以下几个方面:利用短期观测获得优秀的长期预测性能,开发一种可行的方法来选择描述物理现象和本构模型的方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The Proceedings of the Japan Academy Ser. B (PJA-B) is a scientific publication of the Japan Academy with a 90-year history, and covers all branches of natural sciences, except for mathematics, which is covered by the PJA-A. It is published ten times a year and is distributed widely throughout the world and can be read and obtained free of charge through the world wide web.
期刊最新文献
Incorporation of photosynthetically active algal chloroplasts in cultured mammalian cells towards photosynthesis in animals. Cloning of human Type I interferon cDNAs. Origin of an orbiting star around the galactic supermassive black hole. Changes in the expression of mexB, mexY, and oprD in clinical Pseudomonas aeruginosa isolates. Complementary use of visual and olfactory cues to assess capture of Bactrocera dorsalis (Hendel): Implementation and field verification via an IoT-based automatic monitoring system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1