{"title":"Clinical Application of Umbilical Cord Mesenchymal Stem Cells Preserves β-cells in Type 1 Diabetes.","authors":"Ashraf Al Madhoun, Lubaina Koti, Neus Carrió, Maher Atari, Fahd Al-Mulla","doi":"10.1093/stcltm/szad077","DOIUrl":null,"url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is a chronic autoimmune disease associated with complications that reduce the quality of life of affected individuals and their families. The therapeutic options for T1D are limited to insulin therapy and islet transplantation; these options are not focused on preserving β-cell function and endogenous insulin. Despite the promising outcomes observed in current clinical trials involving allogeneic Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) infusion for the management of T1D, the precise underlying mechanism of action remains to be elucidated. In this correspondence, we propose prospective mechanisms of action of WJ-MSCs that may be mediating their observed capability to preserve β-cell function and prevent T1D progression and provide recommendations for further investigations in clinical settings. We also highlight the efficacy of WJ-MSCs for therapeutic applications in comparison to other adult MSCs. Finally, we recommend the participation of muti-centers governed by international organizations to implement guidelines for the safe practice of cell therapy and patients' welfare.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"101-106"},"PeriodicalIF":5.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szad077","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease associated with complications that reduce the quality of life of affected individuals and their families. The therapeutic options for T1D are limited to insulin therapy and islet transplantation; these options are not focused on preserving β-cell function and endogenous insulin. Despite the promising outcomes observed in current clinical trials involving allogeneic Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) infusion for the management of T1D, the precise underlying mechanism of action remains to be elucidated. In this correspondence, we propose prospective mechanisms of action of WJ-MSCs that may be mediating their observed capability to preserve β-cell function and prevent T1D progression and provide recommendations for further investigations in clinical settings. We also highlight the efficacy of WJ-MSCs for therapeutic applications in comparison to other adult MSCs. Finally, we recommend the participation of muti-centers governed by international organizations to implement guidelines for the safe practice of cell therapy and patients' welfare.
期刊介绍:
STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal.
STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes.
The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.