Estrogen sulfotransferase and sulfatase in steroid homeostasis, metabolic disease, and cancer

IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Steroids Pub Date : 2023-11-10 DOI:10.1016/j.steroids.2023.109335
Jingyuan Wang , Ye Feng , Brian Liu , Wen Xie
{"title":"Estrogen sulfotransferase and sulfatase in steroid homeostasis, metabolic disease, and cancer","authors":"Jingyuan Wang ,&nbsp;Ye Feng ,&nbsp;Brian Liu ,&nbsp;Wen Xie","doi":"10.1016/j.steroids.2023.109335","DOIUrl":null,"url":null,"abstract":"<div><p>Sulfation<span><span> and desulfation of steroids are opposing processes that regulate the activation, metabolism, excretion, and storage of steroids, which account for steroid homeostasis. Steroid sulfation and desulfation are catalyzed by cytosolic </span>sulfotransferase<span> and steroid sulfatase<span>, respectively. By modifying and regulating steroids, cytosolic sulfotransferase (SULT) and steroid sulfatase (STS) are also involved in the pathophysiology of steroid-related diseases, such as hormonal dysregulation, metabolic disease, and cancer. The estrogen sulfotransferase (EST, or SULT1E1) is a typical member of the steroid SULTs. This review is aimed to summarize the roles of SULT1E1 and STS in steroid homeostasis and steroid-related diseases.</span></span></span></p></div>","PeriodicalId":21997,"journal":{"name":"Steroids","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steroids","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039128X23001630","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfation and desulfation of steroids are opposing processes that regulate the activation, metabolism, excretion, and storage of steroids, which account for steroid homeostasis. Steroid sulfation and desulfation are catalyzed by cytosolic sulfotransferase and steroid sulfatase, respectively. By modifying and regulating steroids, cytosolic sulfotransferase (SULT) and steroid sulfatase (STS) are also involved in the pathophysiology of steroid-related diseases, such as hormonal dysregulation, metabolic disease, and cancer. The estrogen sulfotransferase (EST, or SULT1E1) is a typical member of the steroid SULTs. This review is aimed to summarize the roles of SULT1E1 and STS in steroid homeostasis and steroid-related diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雌激素亚砜转移酶和磺化酶在类固醇稳态、代谢疾病和癌症中的作用。
类固醇的磺化和去硫化是调节类固醇的激活、代谢、排泄和储存的相反过程,这说明了类固醇的体内平衡。甾体磺化和脱硫分别由胞质硫转移酶和甾体磺化酶催化。通过改变和调节类固醇,胞质硫转移酶(SULT)和类固醇硫酸酯酶(STS)也参与类固醇相关疾病的病理生理,如激素失调、代谢性疾病和癌症。雌激素硫转移酶(EST,或SULT1E1)是类固醇SULTs的典型成员。本文旨在综述SULT1E1和STS在类固醇稳态和类固醇相关疾病中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Steroids
Steroids 医学-内分泌学与代谢
CiteScore
5.10
自引率
3.70%
发文量
120
审稿时长
73 days
期刊介绍: STEROIDS is an international research journal devoted to studies on all chemical and biological aspects of steroidal moieties. The journal focuses on both experimental and theoretical studies on the biology, chemistry, biosynthesis, metabolism, molecular biology, physiology and pharmacology of steroids and other molecules that target or regulate steroid receptors. Manuscripts presenting clinical research related to steroids, steroid drug development, comparative endocrinology of steroid hormones, investigations on the mechanism of steroid action and steroid chemistry are all appropriate for submission for peer review. STEROIDS publishes both original research and timely reviews. For details concerning the preparation of manuscripts see Instructions to Authors, which is published in each issue of the journal.
期刊最新文献
A sustainable approach towards extraction of diosgenin from fenugreek seeds using polystyrene/divinyl benzene resin. Evaluation of structural features of anabolic-androgenic steroids: entanglement for organ-specific toxicity An efficient regioconvergent synthesis of 3-aza-obeticholic acid SPRY4 regulates ERK1/2 phosphorylation to affect oxidative stress and steroidogenesis in polycystic ovary syndrome Palladium catalysed cross coupling reactions on 2,3-isoxazol-17α-ethynyltestosterone, their anti-cancer activity, molecular docking studies and ADMET analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1