Jayoun Kim, Boram Jeong, Il Do Ha, Kook-Hwan Oh, Ji Yong Jung, Jong Cheol Jeong, Donghwan Lee
{"title":"Bias reduction for semi-competing risks frailty model with rare events: application to a chronic kidney disease cohort study in South Korea.","authors":"Jayoun Kim, Boram Jeong, Il Do Ha, Kook-Hwan Oh, Ji Yong Jung, Jong Cheol Jeong, Donghwan Lee","doi":"10.1007/s10985-023-09612-9","DOIUrl":null,"url":null,"abstract":"<p><p>In a semi-competing risks model in which a terminal event censors a non-terminal event but not vice versa, the conventional method can predict clinical outcomes by maximizing likelihood estimation. However, this method can produce unreliable or biased estimators when the number of events in the datasets is small. Specifically, parameter estimates may converge to infinity, or their standard errors can be very large. Moreover, terminal and non-terminal event times may be correlated, which can account for the frailty term. Here, we adapt the penalized likelihood with Firth's correction method for gamma frailty models with semi-competing risks data to reduce the bias caused by rare events. The proposed method is evaluated in terms of relative bias, mean squared error, standard error, and standard deviation compared to the conventional methods through simulation studies. The results of the proposed method are stable and robust even when data contain only a few events with the misspecification of the baseline hazard function. We also illustrate a real example with a multi-centre, patient-based cohort study to identify risk factors for chronic kidney disease progression or adverse clinical outcomes. This study will provide a better understanding of semi-competing risk data in which the number of specific diseases or events of interest is rare.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09612-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In a semi-competing risks model in which a terminal event censors a non-terminal event but not vice versa, the conventional method can predict clinical outcomes by maximizing likelihood estimation. However, this method can produce unreliable or biased estimators when the number of events in the datasets is small. Specifically, parameter estimates may converge to infinity, or their standard errors can be very large. Moreover, terminal and non-terminal event times may be correlated, which can account for the frailty term. Here, we adapt the penalized likelihood with Firth's correction method for gamma frailty models with semi-competing risks data to reduce the bias caused by rare events. The proposed method is evaluated in terms of relative bias, mean squared error, standard error, and standard deviation compared to the conventional methods through simulation studies. The results of the proposed method are stable and robust even when data contain only a few events with the misspecification of the baseline hazard function. We also illustrate a real example with a multi-centre, patient-based cohort study to identify risk factors for chronic kidney disease progression or adverse clinical outcomes. This study will provide a better understanding of semi-competing risk data in which the number of specific diseases or events of interest is rare.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.