Cancer takes many paths through G1/S.

IF 13 1区 生物学 Q1 CELL BIOLOGY Trends in Cell Biology Pub Date : 2024-08-01 Epub Date: 2023-11-10 DOI:10.1016/j.tcb.2023.10.007
Erik S Knudsen, Agnieszka K Witkiewicz, Seth M Rubin
{"title":"Cancer takes many paths through G1/S.","authors":"Erik S Knudsen, Agnieszka K Witkiewicz, Seth M Rubin","doi":"10.1016/j.tcb.2023.10.007","DOIUrl":null,"url":null,"abstract":"<p><p>In the commonly accepted paradigm for control of the mammalian cell cycle, sequential cyclin-dependent kinase (CDK) and cyclin activities drive the orderly transition from G1 to S phase. However, recent studies using different technological approaches and examining a broad range of cancer cell types are challenging this established paradigm. An alternative model is evolving in which cell cycles utilize different drivers and take different trajectories through the G1/S transition. We are discovering that cancer cells in particular can adapt their drivers and trajectories, which has important implications for antiproliferative therapies. These studies have helped to refine an understanding of how CDK inhibition impinges on proliferation and have significance for understanding fundamental features of cell biology and cancer.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":"636-645"},"PeriodicalIF":13.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082069/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tcb.2023.10.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the commonly accepted paradigm for control of the mammalian cell cycle, sequential cyclin-dependent kinase (CDK) and cyclin activities drive the orderly transition from G1 to S phase. However, recent studies using different technological approaches and examining a broad range of cancer cell types are challenging this established paradigm. An alternative model is evolving in which cell cycles utilize different drivers and take different trajectories through the G1/S transition. We are discovering that cancer cells in particular can adapt their drivers and trajectories, which has important implications for antiproliferative therapies. These studies have helped to refine an understanding of how CDK inhibition impinges on proliferation and have significance for understanding fundamental features of cell biology and cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
癌症在G1/S有很多途径。
在普遍接受的哺乳动物细胞周期控制范式中,连续的周期蛋白依赖性激酶(CDK)和周期蛋白活性驱动从G1期到S期的有序过渡。然而,最近的研究使用不同的技术方法和检查广泛的癌细胞类型正在挑战这种既定的范式。另一种模型正在发展,其中细胞周期利用不同的驱动因素,并通过G1/S转变采取不同的轨迹。我们发现,特别是癌细胞可以调整它们的驱动因素和轨迹,这对抗增殖治疗具有重要意义。这些研究有助于完善对CDK抑制如何影响增殖的理解,并对理解细胞生物学和癌症的基本特征具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Cell Biology
Trends in Cell Biology 生物-细胞生物学
CiteScore
32.00
自引率
0.50%
发文量
160
审稿时长
61 days
期刊介绍: Trends in Cell Biology stands as a prominent review journal in molecular and cell biology. Monthly review articles track the current breadth and depth of research in cell biology, reporting on emerging developments and integrating various methods, disciplines, and principles. Beyond Reviews, the journal features Opinion articles that follow trends, offer innovative ideas, and provide insights into the implications of new developments, suggesting future directions. All articles are commissioned from leading scientists and undergo rigorous peer-review to ensure balance and accuracy.
期刊最新文献
Central role of the ER proteostasis network in healthy aging. POGK is a domesticated KRAB domain-containing transposable element with tumor suppressive functions in breast cancer. TFEB links the cGAS-STING pathway to lysosome biogenesis. The culture and application of circulating tumor cell-derived organoids. Emerging roles of palmitoylation in pyroptosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1