{"title":"A modified CCA model describing gelation processes","authors":"K. Ohno, Y. Kawazoe","doi":"10.1016/S1089-3156(99)00049-5","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In order to simulate a gelation process that occurs by condensation-polymerization reactions in solution, the cluster–cluster aggregation (CCA) model is modified by introducing four- and two-functional units as </span>monomers. The modified CCA model shows a clear dependence of the fractal dimension of the resulting gel structure on the ratio between the numbers of the four- and two-functional units. The model should be applicable to various real systems. For example, it explains the behavior of experimentally found fractal dimension that depends on the amount of water added in the sol–gel aggregation process of SiO</span><sub>2</sub> systems.</p></div>","PeriodicalId":100309,"journal":{"name":"Computational and Theoretical Polymer Science","volume":"10 3","pages":"Pages 269-274"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1089-3156(99)00049-5","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1089315699000495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In order to simulate a gelation process that occurs by condensation-polymerization reactions in solution, the cluster–cluster aggregation (CCA) model is modified by introducing four- and two-functional units as monomers. The modified CCA model shows a clear dependence of the fractal dimension of the resulting gel structure on the ratio between the numbers of the four- and two-functional units. The model should be applicable to various real systems. For example, it explains the behavior of experimentally found fractal dimension that depends on the amount of water added in the sol–gel aggregation process of SiO2 systems.