A Workload-Dependent Performance Analysis of an In-Memory Database in a Multi-Tenant Configuration

Dominik Paluch, Harald Kienegger, H. Krcmar
{"title":"A Workload-Dependent Performance Analysis of an In-Memory Database in a Multi-Tenant Configuration","authors":"Dominik Paluch, Harald Kienegger, H. Krcmar","doi":"10.1145/3185768.3186290","DOIUrl":null,"url":null,"abstract":"Modern in-memory database systems begin to provide multi-tenancy features. In contrast to the traditional operation of one large database appliance per system, the utilization of the multi-tenancy features allows for multiple database containers running on one system. Consequently, the database tenants share the same system resources, which has an influence on their performance. Understanding the performance of database tenants in different setups with varying workloads is a challenging task. However, knowledge of the performance behavior is crucial in order to benefit from multi-tenancy. In this paper, we provide fine-grained performance insights of the in-memory database SAP HANA in a multi-tenant configuration. We perform multiple benchmark runs utilizing an online analytical processing benchmark in order to retrieve information about the performance behavior of the multi-tenant database containers. Furthermore, we provide an analysis of the collected results and show a more efficient usage of threads in an environment with less active tenants under specific workload conditions.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"239 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3185768.3186290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Modern in-memory database systems begin to provide multi-tenancy features. In contrast to the traditional operation of one large database appliance per system, the utilization of the multi-tenancy features allows for multiple database containers running on one system. Consequently, the database tenants share the same system resources, which has an influence on their performance. Understanding the performance of database tenants in different setups with varying workloads is a challenging task. However, knowledge of the performance behavior is crucial in order to benefit from multi-tenancy. In this paper, we provide fine-grained performance insights of the in-memory database SAP HANA in a multi-tenant configuration. We perform multiple benchmark runs utilizing an online analytical processing benchmark in order to retrieve information about the performance behavior of the multi-tenant database containers. Furthermore, we provide an analysis of the collected results and show a more efficient usage of threads in an environment with less active tenants under specific workload conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多租户配置下内存数据库的工作负载相关性能分析
现代内存数据库系统开始提供多租户特性。与每个系统使用一个大型数据库设备的传统操作不同,多租户特性的利用允许在一个系统上运行多个数据库容器。因此,数据库租户共享相同的系统资源,这对它们的性能有影响。理解具有不同工作负载的不同设置中的数据库租户的性能是一项具有挑战性的任务。但是,要从多租户中获益,了解性能行为是至关重要的。在本文中,我们提供了多租户配置下内存数据库SAP HANA的细粒度性能洞察。我们利用在线分析处理基准执行多个基准运行,以便检索有关多租户数据库容器的性能行为的信息。此外,我们对收集到的结果进行了分析,并展示了在特定工作负载条件下,在具有较少活跃租户的环境中更有效地使用线程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sampling-based Label Propagation for Balanced Graph Partitioning ICPE '22: ACM/SPEC International Conference on Performance Engineering, Bejing, China, April 9 - 13, 2022 The Role of Analytical Models in the Engineering and Science of Computer Systems Enhancing Observability of Serverless Computing with the Serverless Application Analytics Framework Towards Elastic and Sustainable Data Stream Processing on Edge Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1