Deep generative models for galaxy image simulations

F. Lanusse, R. Mandelbaum, Siamak Ravanbakhsh, Chun-Liang Li, P. Freeman, B. Póczos
{"title":"Deep generative models for galaxy image simulations","authors":"F. Lanusse, R. Mandelbaum, Siamak Ravanbakhsh, Chun-Liang Li, P. Freeman, B. Póczos","doi":"10.1093/mnras/stab1214","DOIUrl":null,"url":null,"abstract":"Image simulations are essential tools for preparing and validating the analysis of current and future wide-field optical surveys. However, the galaxy models used as the basis for these simulations are typically limited to simple parametric light profiles, or use a fairly limited amount of available space-based data. In this work, we propose a methodology based on Deep Generative Models to create complex models of galaxy morphologies that may meet the image simulation needs of upcoming surveys. We address the technical challenges associated with learning this morphology model from noisy and PSF-convolved images by building a hybrid Deep Learning/physical Bayesian hierarchical model for observed images, explicitly accounting for the Point Spread Function and noise properties. The generative model is further made conditional on physical galaxy parameters, to allow for sampling new light profiles from specific galaxy populations. We demonstrate our ability to train and sample from such a model on galaxy postage stamps from the HST/ACS COSMOS survey, and validate the quality of the model using a range of second- and higher-order morphology statistics. Using this set of statistics, we demonstrate significantly more realistic morphologies using these deep generative models compared to conventional parametric models. To help make these generative models practical tools for the community, we introduce GalSim-Hub, a community-driven repository of generative models, and a framework for incorporating generative models within the GalSim image simulation software.","PeriodicalId":8459,"journal":{"name":"arXiv: Instrumentation and Methods for Astrophysics","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/stab1214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Image simulations are essential tools for preparing and validating the analysis of current and future wide-field optical surveys. However, the galaxy models used as the basis for these simulations are typically limited to simple parametric light profiles, or use a fairly limited amount of available space-based data. In this work, we propose a methodology based on Deep Generative Models to create complex models of galaxy morphologies that may meet the image simulation needs of upcoming surveys. We address the technical challenges associated with learning this morphology model from noisy and PSF-convolved images by building a hybrid Deep Learning/physical Bayesian hierarchical model for observed images, explicitly accounting for the Point Spread Function and noise properties. The generative model is further made conditional on physical galaxy parameters, to allow for sampling new light profiles from specific galaxy populations. We demonstrate our ability to train and sample from such a model on galaxy postage stamps from the HST/ACS COSMOS survey, and validate the quality of the model using a range of second- and higher-order morphology statistics. Using this set of statistics, we demonstrate significantly more realistic morphologies using these deep generative models compared to conventional parametric models. To help make these generative models practical tools for the community, we introduce GalSim-Hub, a community-driven repository of generative models, and a framework for incorporating generative models within the GalSim image simulation software.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于星系图像模拟的深度生成模型
图像模拟是准备和验证当前和未来宽视场光学调查分析的重要工具。然而,作为这些模拟基础的星系模型通常仅限于简单的参数光轮廓,或者使用相当有限的可用空间数据。在这项工作中,我们提出了一种基于深度生成模型的方法来创建复杂的星系形态模型,以满足即将到来的调查的图像模拟需求。我们通过为观测图像构建混合深度学习/物理贝叶斯层次模型,明确考虑点扩散函数和噪声特性,解决了与从噪声和psf卷积图像中学习该形态学模型相关的技术挑战。生成模型进一步以物理星系参数为条件,以允许从特定星系群中采样新的光剖面。我们展示了我们在HST/ACS COSMOS调查的星系邮票上训练和采样这样一个模型的能力,并使用一系列二阶和高阶形态学统计来验证模型的质量。使用这组统计数据,与传统的参数模型相比,我们使用这些深度生成模型展示了更真实的形态。为了帮助这些生成模型成为社区的实用工具,我们介绍了GalSim- hub,一个社区驱动的生成模型存储库,以及一个将生成模型整合到GalSim图像仿真软件中的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Space-based weather observatory at Earth-Moon Lagrange point L1 to monitor earth's magnetotail effects on the Moon The Deep Neural Network based Photometry Framework for Wide Field Small Aperture Telescopes. The Largest Russian Optical Telescope BTA: Current Status and Modernization Prospects DRAGraces: A pipeline for the GRACES high-resolution spectrograph at Gemini. Overview and reassessment of noise budget of starshade exoplanet imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1