Aeroelastic Analysis for Side-Booms of a Coplanar Twin-Rotor Wind Turbine

A. Ismaiel, S. Yoshida
{"title":"Aeroelastic Analysis for Side-Booms of a Coplanar Twin-Rotor Wind Turbine","authors":"A. Ismaiel, S. Yoshida","doi":"10.15866/irease.v13i4.18355","DOIUrl":null,"url":null,"abstract":"As an extension to a previous research made by the authors, this paper represents an aeroelastic analysis for the side-booms supporting the two rotors of a coplanar twin-rotor wind turbine. For a better understanding of the turbine dynamic behavior, the inhouse aeroelastic tool developed by the authors, which is considered as the first approach to study the aeroelasticity of multi-rotor wind turbines, has been extended to model the side-booms and compare three different configurations of the boom size during the analysis. The model is based on deterministic models, where aerodynamic loads are calculated using blade element momentum theory, and virtual work method with a modal approach is used for structure analysis. The three configurations of the side-booms have three different diameters while all other geometrical parameters are kept constant. The bigger the boom diameter, the higher the bending stiffness becomes. It was found that the weight of the rotor is dominant over the fluctuating aerodynamic loads in the in-plane direction, while the deflection is highly affected by the turbulence in the out-of-plane direction. It was also found that the relation between the stiffness and the mean side-boom deflection is of second order, hence, a thorough compromise between weight and strength should be done when designing the side-booms.","PeriodicalId":14462,"journal":{"name":"International Review of Aerospace Engineering","volume":"2 1","pages":"135-140"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/irease.v13i4.18355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As an extension to a previous research made by the authors, this paper represents an aeroelastic analysis for the side-booms supporting the two rotors of a coplanar twin-rotor wind turbine. For a better understanding of the turbine dynamic behavior, the inhouse aeroelastic tool developed by the authors, which is considered as the first approach to study the aeroelasticity of multi-rotor wind turbines, has been extended to model the side-booms and compare three different configurations of the boom size during the analysis. The model is based on deterministic models, where aerodynamic loads are calculated using blade element momentum theory, and virtual work method with a modal approach is used for structure analysis. The three configurations of the side-booms have three different diameters while all other geometrical parameters are kept constant. The bigger the boom diameter, the higher the bending stiffness becomes. It was found that the weight of the rotor is dominant over the fluctuating aerodynamic loads in the in-plane direction, while the deflection is highly affected by the turbulence in the out-of-plane direction. It was also found that the relation between the stiffness and the mean side-boom deflection is of second order, hence, a thorough compromise between weight and strength should be done when designing the side-booms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共面双转子风力机侧臂气动弹性分析
作为作者前人研究的延伸,本文对共面双转子风力机支撑双转子的侧臂进行了气动弹性分析。为了更好地理解涡轮机的动力特性,作者开发的内部气动弹性工具被认为是研究多转子风力发电机气动弹性的第一个方法,已经扩展到对侧臂进行建模,并在分析过程中比较了三种不同配置的臂架尺寸。该模型基于确定性模型,采用叶片单元动量理论计算气动载荷,采用模态方法进行结构分析。侧臂的三种结构有三种不同的直径,而所有其他几何参数保持不变。臂架直径越大,弯曲刚度越大。结果表明,在面内方向上,旋翼的重量对波动气动载荷起主导作用,而在面外方向上,旋翼的偏转受湍流的影响较大。刚度与侧臂平均挠度之间的关系是二阶的,因此在设计侧臂时应充分考虑重量与强度之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical Analysis of Reduced Frequency on Flapping Tandem Foils Numerical Study on Aerodynamics Characteristics of R-HAN122 Along with Nose Modification Some Results of the Mobile Space Testing Facility Metamorphosis Prototype Design, Development and Test The System of Rotor Blade Tip’s Illumination for Unmanned Aerial Vehicles Aerodynamic Performance and Stability of a Transonic Axial Compressor Stage with an Airfoil Vortex Generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1