{"title":"Towards a more objective time standard in competitive rowing","authors":"Kenneth M. Kimmins, M. Tsai","doi":"10.1515/jqas-2020-0055","DOIUrl":null,"url":null,"abstract":"Abstract Rowing needs a standardized Gold Medal Standard (GMS) to clearly compare performance across boat classes in competition. Here, we report a method to factor out environmental effects, developing a fairer GMS for individual rowing events. We used results from World Rowing Championships and Olympics Games (2005–2016) to calculate the difference between the fastest winning time of the day and other event winning times on the same day. From this, we calculated a prognostic GMS time for each event via repeated k-fold cross-validation linear regression. Then, we compared these values with the 10-year average winning time and the World Best Time (WBT). We repeated this process to develop prognostic podium standard (PS) times. The prognostic GMS times (RMSE = 9.47; R 2 = 0.875) were universally slower than the WBT (current GMS) by 6.2 s on average but faster than the 10-year average by 12.3 s. The prognostic PS times (RMSE = 10.5; R 2 = 897) were also slower than the WBT but faster than the 10-year average, by 12.2 and 6.3 s respectively. Our time-difference prediction model based on historical data generates non-outlier prognostic times. With the utilization of relative time difference, this approach promises a selection standard independent of environmental conditions, easily applicable across different sports.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"1 1","pages":"307 - 311"},"PeriodicalIF":1.1000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2020-0055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Rowing needs a standardized Gold Medal Standard (GMS) to clearly compare performance across boat classes in competition. Here, we report a method to factor out environmental effects, developing a fairer GMS for individual rowing events. We used results from World Rowing Championships and Olympics Games (2005–2016) to calculate the difference between the fastest winning time of the day and other event winning times on the same day. From this, we calculated a prognostic GMS time for each event via repeated k-fold cross-validation linear regression. Then, we compared these values with the 10-year average winning time and the World Best Time (WBT). We repeated this process to develop prognostic podium standard (PS) times. The prognostic GMS times (RMSE = 9.47; R 2 = 0.875) were universally slower than the WBT (current GMS) by 6.2 s on average but faster than the 10-year average by 12.3 s. The prognostic PS times (RMSE = 10.5; R 2 = 897) were also slower than the WBT but faster than the 10-year average, by 12.2 and 6.3 s respectively. Our time-difference prediction model based on historical data generates non-outlier prognostic times. With the utilization of relative time difference, this approach promises a selection standard independent of environmental conditions, easily applicable across different sports.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.