Makeup-Go: Blind Reversion of Portrait Edit

Ying-Cong Chen, Xiaoyong Shen, Jiaya Jia
{"title":"Makeup-Go: Blind Reversion of Portrait Edit","authors":"Ying-Cong Chen, Xiaoyong Shen, Jiaya Jia","doi":"10.1109/ICCV.2017.482","DOIUrl":null,"url":null,"abstract":"Virtual face beautification (or markup) becomes common operations in camera or image processing Apps, which is actually deceiving. In this paper, we propose the task of restoring a portrait image from this process. As the first attempt along this line, we assume unknown global operations on human faces and aim to tackle the two issues of skin smoothing and skin color change. These two tasks, intriguingly, impose very different difficulties to estimate subtle details and major color variation. We propose a Component Regression Network (CRN) and address the limitation of using Euclidean loss in blind reversion. CRN maps the edited portrait images back to the original ones without knowing beautification operation details. Our experiments demonstrate effectiveness of the system for this novel task.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"29 1","pages":"4511-4519"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Virtual face beautification (or markup) becomes common operations in camera or image processing Apps, which is actually deceiving. In this paper, we propose the task of restoring a portrait image from this process. As the first attempt along this line, we assume unknown global operations on human faces and aim to tackle the two issues of skin smoothing and skin color change. These two tasks, intriguingly, impose very different difficulties to estimate subtle details and major color variation. We propose a Component Regression Network (CRN) and address the limitation of using Euclidean loss in blind reversion. CRN maps the edited portrait images back to the original ones without knowing beautification operation details. Our experiments demonstrate effectiveness of the system for this novel task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化妆- go:肖像编辑的盲目还原
虚拟面部美化(或标记)成为相机或图像处理应用程序的常见操作,这实际上是欺骗。在本文中,我们提出了从这个过程中恢复肖像图像的任务。作为这一思路的第一次尝试,我们对人脸进行了未知的全局操作,旨在解决皮肤平滑和肤色变化两个问题。有趣的是,这两项任务在估计细微细节和主要颜色变化方面带来了截然不同的困难。我们提出了一种成分回归网络(CRN),并解决了在盲回归中使用欧几里得损失的局限性。CRN在不了解美化操作细节的情况下,将编辑后的人像图像映射回原始图像。我们的实验证明了该系统对这项新任务的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Odometry for Pixel Processor Arrays Rolling Shutter Correction in Manhattan World Sketching with Style: Visual Search with Sketches and Aesthetic Context Active Learning for Human Pose Estimation Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1