PO-130 Biological Mechanism of Exercise in Improving Dyslipidemia

Mi Tang, Q. Su
{"title":"PO-130 Biological Mechanism of Exercise in Improving Dyslipidemia","authors":"Mi Tang, Q. Su","doi":"10.14428/EBR.V1I4.10323","DOIUrl":null,"url":null,"abstract":"Objective  The purpose was to further improve the understanding of exercise to improve dyslipidemia and to formulate exercise prescription more scientifically. It provides a reference for the further study of exercise mimics in the treatment of dyslipidemia and helps to reduce the high incidence of dyslipidemia. \nMethods Methods of documentation and comparative analysis are applied.  \nResults It was found that the effects of exercise on dyslipidemia were beneficial or had no obvious effect on some indexes so far, and had no adverse effect. The biological mechanism of exercise regulating dyslipidemia and the effects of different exercise forms (acute exercise, long-term exercise training, different intensity exercise) on improving dyslipidemia were summarized. It is pointed out that exercise plays an important role in regulating the enzymes and proteins associated with dyslipidemia.  Research from several aspects :exercise to block cholesterol biosynthesis, exercise inhibits cholesterol absorption, exercise affects cholesterol conversion, exercise promotes cholesterol conversion to bile acid, and exercise promotes cholesterol metabolism, exercise regulating triglycerides, etc. \nConclusions The regulation of dyslipidemia is a complex process, involving multiple pathways, multiple gene regulation, and different hypolipidemic pathways.A large number of experimental studies have demonstrated the effect of exercise on the improvement of dyslipidemia, but there are few studies on the biological mechanism of exercise, which need to be further studied.In addition, when chemically synthesized anti-hyperlipidemia drugs have many safety problems, we should increase the in-depth study of sports drugs, especially some natural products, that can simulate exercise effectiveness. In order to better control the high incidence of dyslipidemia, it is necessary to improve the development of exercise mimic drugs in improving dyslipidemia.","PeriodicalId":12276,"journal":{"name":"Exercise Biochemistry Review","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exercise Biochemistry Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14428/EBR.V1I4.10323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective  The purpose was to further improve the understanding of exercise to improve dyslipidemia and to formulate exercise prescription more scientifically. It provides a reference for the further study of exercise mimics in the treatment of dyslipidemia and helps to reduce the high incidence of dyslipidemia. Methods Methods of documentation and comparative analysis are applied.  Results It was found that the effects of exercise on dyslipidemia were beneficial or had no obvious effect on some indexes so far, and had no adverse effect. The biological mechanism of exercise regulating dyslipidemia and the effects of different exercise forms (acute exercise, long-term exercise training, different intensity exercise) on improving dyslipidemia were summarized. It is pointed out that exercise plays an important role in regulating the enzymes and proteins associated with dyslipidemia.  Research from several aspects :exercise to block cholesterol biosynthesis, exercise inhibits cholesterol absorption, exercise affects cholesterol conversion, exercise promotes cholesterol conversion to bile acid, and exercise promotes cholesterol metabolism, exercise regulating triglycerides, etc. Conclusions The regulation of dyslipidemia is a complex process, involving multiple pathways, multiple gene regulation, and different hypolipidemic pathways.A large number of experimental studies have demonstrated the effect of exercise on the improvement of dyslipidemia, but there are few studies on the biological mechanism of exercise, which need to be further studied.In addition, when chemically synthesized anti-hyperlipidemia drugs have many safety problems, we should increase the in-depth study of sports drugs, especially some natural products, that can simulate exercise effectiveness. In order to better control the high incidence of dyslipidemia, it is necessary to improve the development of exercise mimic drugs in improving dyslipidemia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动改善血脂异常的生物学机制
目的进一步提高对运动治疗血脂异常的认识,更科学地制定运动处方。为进一步研究运动模拟在治疗血脂异常中的作用提供参考,有助于降低血脂异常的高发。方法采用文献资料法和对比分析法。结果到目前为止,运动对血脂异常的影响是有益的或对某些指标无明显影响,无不良影响。综述了运动调节血脂异常的生物学机制以及不同运动形式(急性运动、长期运动训练、不同强度运动)对血脂异常的改善作用。指出运动在调节与血脂异常相关的酶和蛋白质方面起着重要作用。从几个方面进行研究:运动阻断胆固醇生物合成、运动抑制胆固醇吸收、运动影响胆固醇转化、运动促进胆固醇向胆汁酸转化、运动促进胆固醇代谢、运动调节甘油三酯等。结论血脂异常的调控是一个复杂的过程,涉及多途径、多基因调控、不同的降血脂途径。大量实验研究证实了运动对血脂异常的改善作用,但对运动的生物学机制研究较少,有待进一步研究。此外,在化学合成的抗高脂血症药物存在诸多安全性问题的情况下,我们应该加大对运动药物的深入研究,特别是一些天然产物,可以模拟运动效果。为了更好地控制高发的血脂异常,有必要在改善血脂异常方面加强运动模拟药物的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Exercise on Gene Expression Exercise to Fight Disease Answers to Problems and Critical Thinking Questions Biochemical Assessment of Exercisers Iron Status
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1