Demystifying Openhole and Outer Casing Geometry and Annulus Material Characterization with Third Interface Echo TIE Response

Apoorva Kumar, Gaurav Agrawal, Kamaljeet Singh, Nitesh Kumar, Shaktim Dutta
{"title":"Demystifying Openhole and Outer Casing Geometry and Annulus Material Characterization with Third Interface Echo TIE Response","authors":"Apoorva Kumar, Gaurav Agrawal, Kamaljeet Singh, Nitesh Kumar, Shaktim Dutta","doi":"10.2118/206323-ms","DOIUrl":null,"url":null,"abstract":"\n Ultrasonic imaging based tools have been used for long for delivering high-resolution, comprehensive real-time confirmation of the pipe-to-cement bond quality and downhole pipe condition. However, for comprehensive analysis of cement barriers in challenging scenarios like lightweight cement and for better distinction between different annular materials downhole, a multi-physics evaluation has been developed which combines the measurements taken in thickness-mode with measurements taken in flexural-mode of the casing. Signals from these independent measurements are then processed to provide robust interpretation of solid-liquid-gas behind casing using acquired flexural attenuation and acoustic impedance data.\n The information provided by the flexural attenuation is related to the state of the material in contact with the casing and does not probe deeper into the cement sheath. However, the pulse radiated by the flexural wave packet into the annulus may be reflected by the third interface, the interface with the formation or outer casing. The inner casing is fairly transparent to this reflected pulse so that it can also be picked by the receivers with significant amplitude. Since this reflected pulse propagate through the thickness of the annulus layer it may bring valuable information about the annulus geometry and material, and about the formation or outer casing geometry.\n This paper demonstrates third interface echo principles and showcases several case studies for evaluating the outer casing geometry, annular material characterization, casing cut and pull depth suggestion and determining open hole size.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 23, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206323-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasonic imaging based tools have been used for long for delivering high-resolution, comprehensive real-time confirmation of the pipe-to-cement bond quality and downhole pipe condition. However, for comprehensive analysis of cement barriers in challenging scenarios like lightweight cement and for better distinction between different annular materials downhole, a multi-physics evaluation has been developed which combines the measurements taken in thickness-mode with measurements taken in flexural-mode of the casing. Signals from these independent measurements are then processed to provide robust interpretation of solid-liquid-gas behind casing using acquired flexural attenuation and acoustic impedance data. The information provided by the flexural attenuation is related to the state of the material in contact with the casing and does not probe deeper into the cement sheath. However, the pulse radiated by the flexural wave packet into the annulus may be reflected by the third interface, the interface with the formation or outer casing. The inner casing is fairly transparent to this reflected pulse so that it can also be picked by the receivers with significant amplitude. Since this reflected pulse propagate through the thickness of the annulus layer it may bring valuable information about the annulus geometry and material, and about the formation or outer casing geometry. This paper demonstrates third interface echo principles and showcases several case studies for evaluating the outer casing geometry, annular material characterization, casing cut and pull depth suggestion and determining open hole size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用第三界面回波TIE响应揭开裸眼和外套管几何形状和环空材料特性的神秘面纱
长期以来,基于超声成像的工具一直用于提供高分辨率、全面的实时确认管柱与水泥胶结质量和井下管柱状况。然而,为了在轻质水泥等具有挑战性的情况下对水泥屏障进行全面分析,并更好地区分井下不同的环空材料,研究人员开发了一种多物理场评估方法,将套管的厚度模式测量与弯曲模式测量相结合。然后,利用获得的弯曲衰减和声阻抗数据,对来自这些独立测量的信号进行处理,提供套管后固液气的可靠解释。弯曲衰减提供的信息与材料与套管接触的状态有关,而不深入水泥环。然而,弯曲波包辐射到环空的脉冲可能被第三界面反射,即与地层或外壳的界面。内壳对反射脉冲是相当透明的,因此它也可以被具有显著振幅的接收器拾取。由于这种反射脉冲通过环空层的厚度传播,它可以提供有关环空几何形状和材料以及地层或外壳几何形状的有价值的信息。本文展示了第三种界面回波原理,并展示了几个案例研究,用于评估套管几何形状、环空材料特性、套管切割和拉深建议以及确定裸眼尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incorporation of Neutrally Buoyant Proppants in Horizontal Unconventional Wells to Increase Propped Fracture Area Results for Substantially Improved Well Productivity and Economics Simplified Solution for Managed Pressure Drilling - System that Drillers Can Operate The Case for Combining Well Intervention Solutions to Optimize Production and Reduce Risk Exposure Application of Digital Well Construction Planning Tool During Well Conceptualization Phase Downhole Heating Technology – New Solution for Paraffinic Wells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1