Alana Gabrieli Souza, Rafaela Reis Ferreira, Éder Ramin de Oliveira, M. Kato, S. Mitra, D. Rosa
{"title":"Chemical Stabilization behind Cardamom Pickering Emulsion Using Nanocellulose","authors":"Alana Gabrieli Souza, Rafaela Reis Ferreira, Éder Ramin de Oliveira, M. Kato, S. Mitra, D. Rosa","doi":"10.3390/polysaccharides3010010","DOIUrl":null,"url":null,"abstract":"Cardamom essential oil (EO) is a rare oil of high scientific and economic interest due to its biofunctionality. This work aims to stabilize the EO by Pickering emulsions with nanocellulose, in the form of nanocrystals (CNC) or nanofibers (CNF), and to investigate the stability and chemical and physical interactions involved in the process. The emulsions were characterized by droplet size, morphology, stability, surface charges, Fourier transform infrared spectroscopy, FT-Raman, nuclear magnetic resonance, and scanning electron microscopy. Stable emulsions were prepared with cellulose morphologies and CNCs resulted in a 34% creaming index, while CNFs do not show instability. Emulsions indicate a possible interaction between nanocellulose, α-terpinyl acetate, and 1,8-cineole active essential oil compounds, where α-terpinyl acetate would be inside the drop and 1,8-cineole is more available to interact with cellulose. The interaction intensity depended on the morphology, which might be due to the nanocellulose’s self-assembly around oil droplets and influence on oil availability and future application. This work provides a systematic picture of cardamomum derived essential oil Pickering emulsion containing nanocellulose stabilizers’ formation and stability, which can further be extended to other value-added oils and can be an alternative for the delivery of cardamom essential oil for biomedical, food, cosmetics, and other industries.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/polysaccharides3010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Cardamom essential oil (EO) is a rare oil of high scientific and economic interest due to its biofunctionality. This work aims to stabilize the EO by Pickering emulsions with nanocellulose, in the form of nanocrystals (CNC) or nanofibers (CNF), and to investigate the stability and chemical and physical interactions involved in the process. The emulsions were characterized by droplet size, morphology, stability, surface charges, Fourier transform infrared spectroscopy, FT-Raman, nuclear magnetic resonance, and scanning electron microscopy. Stable emulsions were prepared with cellulose morphologies and CNCs resulted in a 34% creaming index, while CNFs do not show instability. Emulsions indicate a possible interaction between nanocellulose, α-terpinyl acetate, and 1,8-cineole active essential oil compounds, where α-terpinyl acetate would be inside the drop and 1,8-cineole is more available to interact with cellulose. The interaction intensity depended on the morphology, which might be due to the nanocellulose’s self-assembly around oil droplets and influence on oil availability and future application. This work provides a systematic picture of cardamomum derived essential oil Pickering emulsion containing nanocellulose stabilizers’ formation and stability, which can further be extended to other value-added oils and can be an alternative for the delivery of cardamom essential oil for biomedical, food, cosmetics, and other industries.