Research on a Superhydrophobic Coating of Highly Transparent Wear-Resistant Inorganic/Organic Silicon Composite Resin

Yanze Liu
{"title":"Research on a Superhydrophobic Coating of Highly Transparent Wear-Resistant Inorganic/Organic Silicon Composite Resin","authors":"Yanze Liu","doi":"10.3390/COATINGS11030338","DOIUrl":null,"url":null,"abstract":"Transparent superhydrophobic materials can be used in car glass, curtain walls, mobile phone screens, and other items. However, the hydrophobicity, transparency, and abrasion resistance of the transparent superhydrophobic coating are mutually restricted, and it is difficult to prepare transparent superhydrophobic coating with good performance. In this article, taking the mobile phone screen transparent coating as the research object, the inorganic silicon resin crystal coating as the main material, and the organic silicon resin as the binder and the hardness regulator, with the addition of the hydrophobically modifying nano silica particles, a high-transparent, wear-resistant, and superhydrophobic coating is researched. Experiments showed that when the composition mass ratio of SJ-32F resin to 9825 resin is 9:1 and the mass ratio of modified nano silica is 1.7%, the coating has a hardness of 3H–4H suitable for mobile phone screens, the contact angle of the coating can reach more than 150°, the rolling angle is less than 10°, and the light transmittance of the coating remains high at 91–95%. The cross-hatch adhesion strength of the coating reaches 5B, and the average adhesion strength measured by the adhesion pull tester is about 5.4 MPa. When the rubbing times reached 100, the light transmittance of the coating remained above 80%, and the contact angle remained basically unchanged.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"43 1","pages":"338"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11030338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Transparent superhydrophobic materials can be used in car glass, curtain walls, mobile phone screens, and other items. However, the hydrophobicity, transparency, and abrasion resistance of the transparent superhydrophobic coating are mutually restricted, and it is difficult to prepare transparent superhydrophobic coating with good performance. In this article, taking the mobile phone screen transparent coating as the research object, the inorganic silicon resin crystal coating as the main material, and the organic silicon resin as the binder and the hardness regulator, with the addition of the hydrophobically modifying nano silica particles, a high-transparent, wear-resistant, and superhydrophobic coating is researched. Experiments showed that when the composition mass ratio of SJ-32F resin to 9825 resin is 9:1 and the mass ratio of modified nano silica is 1.7%, the coating has a hardness of 3H–4H suitable for mobile phone screens, the contact angle of the coating can reach more than 150°, the rolling angle is less than 10°, and the light transmittance of the coating remains high at 91–95%. The cross-hatch adhesion strength of the coating reaches 5B, and the average adhesion strength measured by the adhesion pull tester is about 5.4 MPa. When the rubbing times reached 100, the light transmittance of the coating remained above 80%, and the contact angle remained basically unchanged.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高透明耐磨无机/有机硅复合树脂超疏水涂层的研究
透明超疏水材料可用于汽车玻璃、幕墙、手机屏幕等物品。然而,透明超疏水涂层的疏水性、透明度和耐磨性是相互制约的,很难制备出性能良好的透明超疏水涂层。本文以手机屏幕透明涂层为研究对象,以无机硅树脂晶体涂层为主要材料,以有机硅树脂为粘结剂和硬度调节剂,加入疏水改性纳米二氧化硅颗粒,研究了一种高透明、耐磨、超疏水的涂层。实验表明,当SJ-32F树脂与9825树脂的组成质量比为9:1,改性纳米二氧化硅的质量比为1.7%时,涂层硬度为3H-4H,适用于手机屏幕,涂层的接触角可达150°以上,滚动角小于10°,涂层的透光率保持在91-95%的高水平。涂层的交叉口粘接强度达到5B,粘接拉力试验机测得的平均粘接强度约为5.4 MPa。当摩擦次数达到100次时,涂层透光率保持在80%以上,接触角基本保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anticorrosion Property of Alcohol Amine Modified Phosphoric and Tannic Acid Based Rust Converter and Its Waterborne Polymer-Based Paint for Carbon Steel Comprehensive Data Collection Device for Plasma Equipment Intelligence Studies Coffee Wastes as Sustainable Flame Retardants for Polymer Materials Numerical Investigation on the Evaporation Performance of Desulfurization Wastewater in a Spray Drying Tower without Deflectors Effect of Assembly Unit of Expansive Agents on the Mechanical Performance and Durability of Cement-Based Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1